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Sixties – the dawn of GR renaissance

Key experimental and theoretical breakthroughs

Gravitational redshi� (Pound & Rebka 1959)

�asars (Hong-Yee Chiu 1964)

Shapiro e�ect (1964)

CMB (Penzas & Wilson1965)

Black-hole physics (Penrose paper on singularity formation:
1965)

. . .



1962 Bondi, van der Burg, Metzner and Sachs

Asymptotic symmetry group of a strict asymptotically flat
spacetime in four dimensions

Lorentz n Supertranslations −→ 6 +∞ ≡ BMS4

rather than Poincaré ≡ Lorentz n Translations −→ 6 + 4

Recognized as a valuable tool (Ashtekar, Komar, Penrose

and many others) [see Brussels school for modern perspective and developments]

Classical: solution space, conserved charges, algebra etc.

�antum: BMS4-invariant S matrix (massless particles)



2000s – gauge–gravity holography & AdS

Anti de Sitter

Maximally symmetric Einstein spacetime with negative
curvature (cosmological constant)

Einstein spacetimes palette of asymptotic symmetries

e.g. for strict AdSn asymptotics

SO(n− 1, 2) −→ n(n+1)/2 ≡ conformal group in n− 1 dim

→ symmetry of the boundary field theory→ CFT

AdS/CFT holographic correspondence

Type IIB string theory in the bulk and N = 4 super-Yang–Mills
on the boundary – AdS5 soon extended to arbitrary dimension



Intriguing & timely qestion

What about asymptotically flat spacetime holography?

n− 1-dim boundary theory invariant under BMSn



Clues from solving classical eqations

“Phenomenological” holography

Keep only gravitational dynamics in the bulk

Interpret the solution space from a boundary perspective

Gravitational bulk dynamics encoded in boundary data→
holographic interpretation

Central qestions on “flat holography”

Where/which is the boundary?

How is BMS symmetry implemented on the boundary?

What are the boundary degrees of freedom?

Subject of the talk
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Asymptotic symmetries in dimension n

Basic field in gravity: the curvature

potential: metric GAB → di�eomorphism invariance

The gauge-fixing approach

Fix a gauge: n conditions

Determine the residual di�eomorphisms

Set “reasonable” fall-o�s/boundary conditions

The asymptotic symmetry group (ASG) is the subset of residual
di�eomorphisms compatible with the adopted fall-o�s



The electromagnetic paradigm

Basic field: FAB = ∂AAB − ∂BAA

potential: AB → gauge invariance AB → AB + ∂Bλ

The gauge-fixing approach

Fix a gauge e.g. Lorenz gauge: ∇BAB = 0

Determine the residual di�eomorphisms: �λ = 0

The residual symmetry group is the set of harmonic functions



Einstein spacetimes with Λ < 0 in n dimensions

The Newman–Unti gauge (r , t , x i
, i = 1, . . . , n− 2)

Gauge conditions: Grr = 0, Grt = −1, Gri = 0

ds2 =
V
r

dt2 − 2dtdr + Gij
(
dx i − U idt

) (
dx j − Ujdt

)
V , Gij , U i functions of all coordinates

Residual di�eomorphisms: ω(t, x), f (t, x), Y i(t, x)

Several options for fall-o�s/boundary conditions
mildest boundary conditions→Weyl, supertranslations and
superrotations (3 singular) –∞-dim
Dirichlet boundary conditions e.g. locked Gij ' r2Sn−2 →
ω = 0, f restricted, Y i conformal→ SO(n− 1, 2) conformal
group in n− 1 dimensions – finite (AdS/CFT paradigm)



Incomplete Newman–Unti gauge fixing [Ciambelli, Marteau, Petropoulos,

Ruzziconi ’20; Ciambelli, Marteau, Petkou, Petropoulos, Rivera, Ruzziconi, Siampos]

Gauge conditions: Grr = 0, Grt = −1, Gri 6= 0

Mild boundary conditions→Weyl, supertranslations,
superrotations plus local SO(n− 2, 1) –∞-dim



Einstein spacetimes reconstructed

Solution space with incomplete Newman–Unti gauge and

mild boundary conditions

n(n−1)+2
2 Einstein’s equations→ n2 − 3 functions of (t, x)

→ boundary data [µ, ν = 0, 1, . . . , n− 2]
gµν symmetric← n(n−1)

2
boundary metric
Tµν symmetric and traceless← n(n−1)

2 − 1
conformal boundary energy–momentum tensor
uµ ← n− 2
boundary normalized vector field

remaining n− 1 Einstein’s equations

∇µTµν = 0

→ map to a Weyl-covariant relativistic fluid with velocity uµ –
trigger for fluid/gravity holographic correspondence [Bha�acharyya,

Hubeny, Minwalla, Rangamani ’07; Haack, Yarom ’08; etc.]



Relativistic hydrodynamics [Eckart ’40; Landau and Lifshitz ’60]

Ignoring matter current and chemical potential

On arbitrary (non-flat) geometry gµν of dim d + 1

∇µTµν = 0 plus Gibbs–Duhem & equation of state (conformal)

‖u‖2 = −k2 hµν = gµν + uµuν
k2

Tµν = ε
uµuν

k2 + phµν + τµν +
uµqµ

k2 +
uνqµ

k2

energy density ε = 1
k2 Tµνuµuν thermodynamic pressure p

heat current and viscous stress tensor qµ, τµν – transverse

fluid velocity uµ – arbitrary [Eckart ’40; Landau and Lifshitz ’60]



Properties here

Infinite-dim bulk ASG ≡ boundary-fluid invariance

Weyl, sT o sR ≡ boundary di�eos & local SO(n− 2, 1) ≡
hydrodynamic-frame invariance
Choosing a hydrodynamic frame discards the local SO(n− 2, 1)
invariance and completes the bulk gauge fixing (e.g. u = −k2dt)

Imposing the velocity & Dirichlet boundary conditions

gµν = ηµν
ASG ≡ conformal group in n− 1 dim – SO(n− 1, 2)



The seed for a holographic dictionary

In n = 4 dimensions with complete gauge fixing

General solution with Λ = −3k2: 6 + 5 arbitrary boundary data

gµν (ds2 = −k2
(
Ωdt − bidx i

)2
+ aijdx idx j)

Tµν → {ε = 2p, qµ, τµν} with τµµ = 0 & ∇µTµν = 0

ds2
Einstein = 2

u
k2 (dr + rA) + r2ds2 − 2

r
k2σµνdxµdxν +

S
k4

+
8πG
k4r

[
εu2 +

4u
3

(
q− 1

8πG
∗ c
)

+
2k2

3

(
τττ +

1
8πGk2 ∗ ccc

)]
+ O (1/r2)

Sµν = 2u(µDλ

(
σ λ
ν) + ω λ

ν)

)
− R

2 uµuν + 2ω λ
(µ σν)λ + (σ2 + k4γ2) hµν

Cµν → {c, cµ, cµν} with cµµ = 0 & ∇µCµν = 0 (Co�on)



Holography is more

Genuine duality

between

bulk gravitational theory with AdSn asymptotics

boundary CFT – quantum theory with SO(n− 1, 2)
symmetry

enables the computation of correlation functions with gµν a
source and Tµν a vev
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The asymptotic structure

From AdSn to flatn asymptotics

Λ = − (n−1)(n−2)
2 k2→ 0
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Emergence of Carrollian geometry in n− 1 dimensions

ds2 = −k2
(
Ωdt − bidx i

)2
+ aijdx idx j→ aijdx idx j = d`2

Carrollian di�eomorphisms t ′ = t ′(t, x) x′ = x′(x)



Ricci-flat in incomplete Newman–Unti gauge

First hint in n = 4 limk→0 ds2
Einstein

[Ciambelli et al. ’18]

ds2
Ricci-flat described in terms of Carrollian boundary data

Carrollian geometry (6)
degenerate metric d`2 = aijdx idx j (3)
Ehresmann connection Ωdt − bidx i (3)

Carrollian fluid (5)
energy ε (1)
momenta – heat current πi (2) and stress tensor Eij (2)

Carrollian-fluid “velocity” (2)

Full solution space [Brussels school; Ciambelli et al. ’21]

infinite number of further Carrollian data obeying Carrollian
dynamics – at every O (1/rn)



Ricci-flat spacetimes up to O (1/r2)

ds2
flat = 2µµµ

(
dr + rϕaµµµ

a − r
θ

2
µµµ+ ∗µµµbD̂b ∗$ −

1
2
µµµaD̂bC

b
a

)
+

(
ρ2 +

CcdC cd

8

)
d`2 + Cab

(
rµµµaµµµb − ∗$ ∗µµµaµµµb)

+
1
r

[(
8πGε− K̂

)
µµµ2 +

32πG
3

(
πa −

1
8πG

∗ ψa

)
µµµµµµa

− 16πG
3

Eabµµµ
aµµµb
]

+ O (1/r2)


µµµ = limk→0

u
k2

ρ2 = r2 + ?$2

Nab = D̂υυυCab

Bulk ASG matches the boundary invariances

Weyl ω(t, x)

sT f (t, x)o sR Y i(x) ≡ Carrollian di�eos

Carrollian hydrodynamic-frame transformations

for Dirichlet (d`2 ' S2 & zero Ehresmann)→ BMS4 ≡ CCarroll3



Hints for flat holography

Fundamental feature

bulk reconstruction→ infinite number of boundary data
⇒ possibly non-holographic bulk/boundary duality

The 3-dim dual field theory on the Carrollian bry.

must be invariant under CCarroll3 ≡ BMS4 ≡ sT o SL(2,C)

expected to be non-local

progress requires reinterpreting gravitational processes from a
boundary perspective



Celestial versus chthonian holography

What about flat4/CFT2 celestial holography? [Harvard school]

Framework S2 ≡ spatial section of the Carrollian bry.
2-dim energy–momentum tensor ∼

∫
dtNab

Achievements mapping of some massless bulk S-matrix
elements to CFT2 correlators

Features non-local, non-AdS-like en.–mom. tensor
limited to SL(2,C) invariance – vs. BMS4

ignores the deep chthonian degrees of freedom

kinematic book-keeping device for radiation S-matrix
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Facts & qotable

Flat bulk is mapped onto BMS/Carrollian boundary dynamics

supports a Carrollian-fluid/flat-gravity sector

requires infinite sets of deep boundary data

suggests flat-holographic duals are non-local field theories

Worth investigating

pursue the quest of BMS-invariant field theories [Le Bellac,

Lévy-Leblond ’73; Souriau ’85; Duval et al. ’14; Bagchi et al. ’20; Henneaux, Salgado–Rebolledo ’21]

circumscribe the precise role of celestial CFT
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Carrollian geometry [Duval et al. ’14; Bekaert et al. ’16; Ciambelli et al. ’19]

Basic ingredients in d + 1 dimensions

degenerate metric: d`2 = aij(t, x)dx idx j i, j = 1, . . . , d

Ehresmann connection: eee = Ωdt − bidx i

General covariance

Carrollian di�eomorphisms: t ′ = t ′(t, x) x′ = x′(x)

Example: zero-c limit of Minkowski spacetime [Lévy–Leblond ’65]

d`2 = δijdx idx j eee = dt

isometries: Carroll group

{
t ′ = t + Bix i + t0,

x ′k = Rk
i x i + xk

0

Property

CCarrrolld+1 ≡ BMSd+2
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Eqations of motion [Eckart ’40; Landau and Lifshitz ’60]

Ignoring matter current and chemical potential

On arbitrary (non-flat) geometry gµν of dim d + 1

∇µTµν = 0 plus Gibbs–Duhem & equation of state (conformal)

Tµν = ε
uµuν

k2 + phµν + τµν +
uµqν

k2 +
uνqµ

k2

‖u‖2 = −k2 hµν = gµν + uµuν
k2

energy density ε = 1
k2 Tµνuµuν thermodynamic pressure p

heat current and viscous stress tensor qµ, τµν – transverse
normally expressed as uµ- and T -derivative expansions with
transport coe�icients



General covariance and Weyl invariance

Fluid eqations covariant – diffeomorphism invariance

Di�eomorphisms are generated by vector fields (i, j = 1, . . . , d)

ξ = f ∂t + Y i∂i

f (t, x) and Y i(t, x) d + 1 functions of time and space

δξ = −Lξ

Conformal (Weyl-covariant) fluids: fluid eqations

invariant under arbitrary rescaling of the metric

δωgµν = −2ωgµν δωuµ = ωuµ

ω(t, x) arbitrary function of time and space

δω = wω



The hydrodynamic-frame invariance

Landau–Lifshitz’s following 1940 Eckart’s statements

[Theoretical Physics vol. 6 §136]

uµ is not physical/measurable – a book-keeping device

Translation: gauge invariance

Arbitrary local Lorentz transformations of uµ can be
compensated by appropriate modifications of T , ε, p, qµ, τµν

such that Tµν and the entropy current Sµ remain invariant
Note: These are not Lorentz isometries (generally absent) but
tangent-space local transformations generated by Z i (d boosts),
Sij antisymmetric (d(d−1)/2 rotations)



In summary

Conformal-fluid symmetries on arbitrary backgrounds

∞-dim generated by {ω(t, x), f (t, x), Y i(t, x), Z i(t, x), Sij(t, x)}
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