Supersymmetric boundaries and defects

Pantelis Fragkos

nu

Arnold Sommerfeld

Center for theoretical Physics

Aristotle University of Thessaloniki, December 20, 2018

Overview

(1) QFT and (super)symmetries
(2) Boundaries
(3) Defects
(4) Outlook

Field theory recap

Action functional, e.g. in 2 dimensions (τ, σ) :

$$
S\left[\phi_{i}, \phi_{i}^{\prime}, \dot{\phi}_{i}\right]=\int d \sigma d \tau \mathcal{L}\left(\phi_{i}, \phi_{i}^{\prime}, \dot{\phi}_{i}\right), \quad \dot{\phi}_{i} \equiv \partial_{\tau} \phi_{i}, \phi_{i}^{\prime} \equiv \partial_{\sigma} \phi_{i}
$$

Euler-Lagrange equations of motion:

$$
\frac{\partial}{\partial \tau}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}_{i}}\right)+\frac{\partial}{\partial \sigma}\left(\frac{\partial \mathcal{L}}{\partial \phi_{i}^{\prime}}\right)-\frac{\partial \mathcal{L}}{\partial \phi_{i}}=0
$$

Symmetries: Noether's theorem

Classical field theory:
Continuous symmetries $\xrightarrow{\text { Noether }}$ Conserved quantities: "Charges"
Quantum field theory: Charges become operators
\leadsto Lie algebra (i.e. a set of commutation relations that "close")

Examples

Example 1: Complex scalar field

$$
\mathcal{L}=|\dot{\phi}|^{2}-\left|\phi^{\prime}\right|^{2}-m^{2}|\phi|^{2}, \quad \text { EOM: } \ddot{\phi}-\phi^{\prime \prime}+m^{2} \phi=0
$$

Symmetry: $\phi \rightarrow e^{i \epsilon} \phi=(1+i \epsilon) \phi$
Conserved charge: $Q=\int d \sigma\left(\dot{\phi}^{*} \phi-\phi^{*} \dot{\phi}\right)$

Examples

Example 1: Complex scalar field

$$
\mathcal{L}=|\dot{\phi}|^{2}-\left|\phi^{\prime}\right|^{2}-m^{2}|\phi|^{2}, \quad \text { EOM: } \ddot{\phi}-\phi^{\prime \prime}+m^{2} \phi=0
$$

Symmetry: $\phi \rightarrow e^{i \epsilon} \phi=(1+i \epsilon) \phi$
Conserved charge: $Q=\int d \sigma\left(\dot{\phi}^{*} \phi-\phi^{*} \dot{\phi}\right)$

Example 2: Spacetime symmetries

- Time translation \rightarrow Energy
- Space translation \rightarrow Momentum
- Rotation (spacetime) \rightarrow Angular momentum

In quantum theory: Poincaré algebra (Momenta, Angular momenta, Boosts)

Examples

Example 3: Supersymmetry

$$
\mathcal{L}(\phi, \psi, \text { derivatives })
$$

Symmetric under supersymmetry transformation. Schematically:

$$
\phi \rightarrow \phi+\epsilon \psi, \quad \psi \rightarrow \psi+\epsilon \phi
$$

\Rightarrow Conserved charges: Supercharges
In quantum theory: Supersymmetry algebra (Poincare + supercharges)

$$
\{Q, \bar{Q}\}=P
$$

Boundaries

We saw: symmetry of spacetime \rightarrow conserved quantity of the theory. What if some symmetry of the spacetime breaks?

Boundaries

We saw: symmetry of spacetime \rightarrow conserved quantity of the theory. What if some symmetry of the spacetime breaks?

Boundaries

We saw: symmetry of spacetime \rightarrow conserved quantity of the theory. What if some symmetry of the spacetime breaks?

\Rightarrow Some conserved quantities are no longer conserved!

Boundaries in SUSY

Recall: $\{Q, \bar{Q}\}=P$
Some supercharges not conserved anymore either (since some P is not conserved).

Boundaries in SUSY

Recall: $\{Q, \bar{Q}\}=P$
Some supercharges not conserved anymore either (since some P is not conserved).
But we still want to have supersymmetric theory!

- Nice mathematical description
- We can compute things via localization
- We like it

Best we can do: keep some of them (at most half)

Matrix factorizations

Preserve a specific half of supersymmetry: Condition on the superpotential.
Superpotential: a holomorphic function of the scalar fields $W\left(\phi_{i}\right)$.

Condition to preserve SUSY

$$
W=\sum_{i} E_{i} J_{i}
$$

Matrix factorizations

Preserve a specific half of supersymmetry: Condition on the superpotential.
Superpotential: a holomorphic function of the scalar fields $W\left(\phi_{i}\right)$.
Condition to preserve SUSY

$$
W=\sum_{i} E_{i} J_{i}
$$

Example: $W=\phi^{d}$
$W=\phi^{d}=\phi^{L} \cdot \phi^{d-L}$: Not unique!
Every factorization of this type defines a (generalized) boundary condition.

Defects

- What are defects: Lines separating different theories on the same
 surface

Defects

- What are defects: Lines separating different theories on the same
 surface
- Another way to view them: theories with boundaries glued together

Defects

- Defects also break some (super)symmetry, like boundaries
- Preserve (some) half of supersymmetry: Factorization of difference of superpotentials

Defects

- Defects also break some (super)symmetry, like boundaries
- Preserve (some) half of supersymmetry: Factorization of difference of superpotentials
- Folding trick: Defect between \mathcal{C}_{1} and $\mathcal{C}_{2} \Leftrightarrow$ boundary of $\mathcal{C}_{1} \otimes \overline{\mathcal{C}}_{2}$
- SUSY preserving defect= Factorization of $W_{1}-W_{2}$

Structure

- Factorization gives a well-defined way to merge: add superpotentials

Structure

- Factorization gives a well-defined way to merge: add superpotentials
- Merge a defect with a boundary:

$$
\left(W_{1}-W_{2}\right)+W_{2}=W_{1}
$$

Structure

- Factorization gives a well-defined way to merge: add superpotentials
- Merge a defect with a boundary: $\left(W_{1}-W_{2}\right)+W_{2}=W_{1}$
- Merge defects together: $\left(W_{1}-W_{2}\right)+\left(W_{2}-W_{3}\right)=$ $W_{1}-W_{3}$

Structure

- Factorization gives a well-defined way to merge: add superpotentials
- Merge a defect with a boundary: $\left(W_{1}-W_{2}\right)+W_{2}=W_{1}$
- Merge defects together:
$\left(W_{1}-W_{2}\right)+\left(W_{2}-W_{3}\right)=$ $W_{1}-W_{3}$
- Multiplicative structure: Defects are "operators" acting on boundaries: complete algebraic description.

[

Outlook

- Symmetries $\xrightarrow{\text { Noether }}$ Conserved charges $\xrightarrow{\text { QFT }}$ Operators
- Boundaries break some symmetries
- Special type of boundaries described by factorization of superpotential
- Defects: generalized operators acting on boundaries

The End

Thank you for your attention!

