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Synopsis

We will concern ourselves with 2 basic questions:

1 What are conformal field theories and why are they important in modern
theoretical physics?

2 What are their characteristics and how can they be exploited?
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The Basics I

Start with quantum mechanics...

[xi , pj ] = i~δij , position and momentum → operators.
Works for fixed number of particles (i , j = 1, ..,N), starts to “fail” when we
include special relativity.

Can’t demand fixed number of particles, virtual particles are created all the
time → generalization: quantum field theory!

Field φ(x , t) function in spacetime → ∞ degrees of freedom! Usual
prescription:

Start from Lagrangian,

Find conjugate variables (field and a derivative),

Promote to operators, impose commutation relations,

Define annihilation/creation operators,

Compute “observables”, correlation functions, amplitudes..
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The Basics II

Major problem

Theories are usually pathological
in high-energies. See left!

Renormalization: impose cutoff in some very large energy scale and “integrate
out” some content of the theory → various couplings start depending on

energy scale.

⇒ Quantum field theory after renormalization: QFTUV → QFTIR
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The Basics III

Important concepts in this framework:

1 Critical points: points where couplings don’t depend on energy scale →
scale invariance → usually conformal invariance.

2 Universality (e.g liquid - gas phase transition ↔ ferromagnetic phase
transition).

3 Universality classes → classified by “critical exponents”, constants.

Look at “the small picture” (conformal field theories, critical points) → “the
big picture” (parameter space). Any QFT can be thought of as “perturbation”
of a CFT!
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The Tools I

Consider scalar action,

S =

∫
dDx

1

2
(∂φ)2 − 1

2
m2φ2 −

∑
n≥3

λn

n!
φn

 (1)

Spectrum of operators (scaling dimension) → first characteristic of these
theories.

We want to stay away from Lagrangians from now on!

At the critical points,
∆ = ∆eng + γ(λ?n)

where ∆eng is the dimension of an operator that we can read off the
Lagrangian, γ is the anomalous correction. In general it is non-integer →
continuous spectrum → ... no well-defined “particles”.
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The Tools II

In conformal field theories, correlation functions are extremely constrained!

〈φ(x1)φ(x2)〉 =
c

(x1 − x2)2∆
(2a)

〈φ1(x1)φ2(x2)φ3(x3)〉 =
f123

(x1 − x2)∆1+∆2−∆3 (x2 − x3)∆2+∆3−∆1 (x1 − x3)∆1+∆3−∆2

(2b)

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
g(u, v)

(x1 − x2)2∆(x3 − x4)2∆
(2c)

The coefficients f123 on [2b] are the second characteristics of these theories.
Note:

Can’t move on to higher correlators, no new info. Still, these are extremely
valuable.
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The Tools III

More tools...

1 Unitarity:
〈
O†(t1)..O(t1)

〉
≥ 0 in Lorentzian signature.

Usually interested in unitary theories → strong constraints on the operator
spectrum.

2 “Operator Product Expansion” : OiOj ∼
∑

ijk Ok

Right-hand side depends on ∆’s → everything can be built from (∆,fijk),
“CFT data”.

3 “Conformal Block Decomposition”:
Apply the Operator Product Expansion on [2c].

→ g(u, v) ∼
∑
O

g∆O,l(u, v) (3)

See that everything comes down to the conformal blocks, contribution to the
4-point function from a single “conformal multiplet”.

Konstantinos Deligiannis



Part 1
Part 2a
Part 2b
Part 2b
Part 2b
Part 2b
Part 2b

The Conformal Bootstrap I

Conformal Bootstrap → crossing symmetry!

Recall 4-point correlator,

〈φ1(x1)φ2(x2)φ3(x3)φ(x4)〉 =
g(u, v)

(x1 − x2)2∆(x3 − x4)2∆
(4)

No ordering on the left-hand side:
→ Implications on the function g(u, v)
→ Implications on the conformal blocks g∆O,l(u, v)!
Invariance under (x1 ↔ x3, x2 ↔ x4):

∑
O p∆O,lF∆,∆O,l = 1

F∆,∆O,l =
v∆g∆O,l(u, v)− u∆g∆O,l(v , u)

u∆ − v∆
, p∆O,l ≡ f 2

φφO > 0
(5)

Konstantinos Deligiannis



Part 1
Part 2a
Part 2b
Part 2b
Part 2b
Part 2b
Part 2b

The Conformal Bootstrap I

Conformal Bootstrap → crossing symmetry!

Recall 4-point correlator,

〈φ1(x1)φ2(x2)φ3(x3)φ(x4)〉 =
g(u, v)

(x1 − x2)2∆(x3 − x4)2∆
(4)

No ordering on the left-hand side:

→ Implications on the function g(u, v)
→ Implications on the conformal blocks g∆O,l(u, v)!
Invariance under (x1 ↔ x3, x2 ↔ x4):

∑
O p∆O,lF∆,∆O,l = 1

F∆,∆O,l =
v∆g∆O,l(u, v)− u∆g∆O,l(v , u)

u∆ − v∆
, p∆O,l ≡ f 2

φφO > 0
(5)

Konstantinos Deligiannis



Part 1
Part 2a
Part 2b
Part 2b
Part 2b
Part 2b
Part 2b

The Conformal Bootstrap I

Conformal Bootstrap → crossing symmetry!

Recall 4-point correlator,

〈φ1(x1)φ2(x2)φ3(x3)φ(x4)〉 =
g(u, v)

(x1 − x2)2∆(x3 − x4)2∆
(4)

No ordering on the left-hand side:
→ Implications on the function g(u, v)

→ Implications on the conformal blocks g∆O,l(u, v)!
Invariance under (x1 ↔ x3, x2 ↔ x4):

∑
O p∆O,lF∆,∆O,l = 1

F∆,∆O,l =
v∆g∆O,l(u, v)− u∆g∆O,l(v , u)

u∆ − v∆
, p∆O,l ≡ f 2

φφO > 0
(5)

Konstantinos Deligiannis



Part 1
Part 2a
Part 2b
Part 2b
Part 2b
Part 2b
Part 2b

The Conformal Bootstrap I

Conformal Bootstrap → crossing symmetry!

Recall 4-point correlator,

〈φ1(x1)φ2(x2)φ3(x3)φ(x4)〉 =
g(u, v)

(x1 − x2)2∆(x3 − x4)2∆
(4)

No ordering on the left-hand side:
→ Implications on the function g(u, v)
→ Implications on the conformal blocks g∆O,l(u, v)!

Invariance under (x1 ↔ x3, x2 ↔ x4):
∑
O p∆O,lF∆,∆O,l = 1

F∆,∆O,l =
v∆g∆O,l(u, v)− u∆g∆O,l(v , u)

u∆ − v∆
, p∆O,l ≡ f 2

φφO > 0
(5)

Konstantinos Deligiannis



Part 1
Part 2a
Part 2b
Part 2b
Part 2b
Part 2b
Part 2b

The Conformal Bootstrap I

Conformal Bootstrap → crossing symmetry!

Recall 4-point correlator,

〈φ1(x1)φ2(x2)φ3(x3)φ(x4)〉 =
g(u, v)

(x1 − x2)2∆(x3 − x4)2∆
(4)

No ordering on the left-hand side:
→ Implications on the function g(u, v)
→ Implications on the conformal blocks g∆O,l(u, v)!
Invariance under (x1 ↔ x3, x2 ↔ x4):

∑
O p∆O,lF∆,∆O,l = 1

F∆,∆O,l =
v∆g∆O,l(u, v)− u∆g∆O,l(v , u)

u∆ − v∆
, p∆O,l ≡ f 2

φφO > 0
(5)

Konstantinos Deligiannis



Part 1
Part 2a
Part 2b
Part 2b
Part 2b
Part 2b
Part 2b

The Conformal Bootstrap II

This highly non-trivial sum rule is called the bootstrap equation. Geometric
interpretation [Rattazzi et al., JHEP 12 (2008) 031] → extract information in
D=4.

Investigate when the bootstrap
equation is satisfied..

Start with 2 Scalar operators of
dimension ∆, apply Operator Product
Expansion.
Left, [Results from MSc dissertation]:
Determine numerical upper bound on
f (∆) (blue and green lines) on the
allowed minimum dimensions (green
shaded area) of the first scalar operator
present on the right-hand side of the
OPE.
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Conformal Bootstrap III

Important applications to many critical phenomena: e.g 3D Ising model →
world-record precision for “critical exponents” [Kos et al., JHEP 16 (2016)

036].

Input the operator spectrum correctly
(Z2 discrete global symmetry, 2
relevant scalars σ, ε..) → “pushes” the
method to bring us closer to Ising.
Left, [Kos et al., JHEP 11 (2014) 109]:

Cross: Known dimensions with
errors.

Blue: Bootstrap predictions with
different input.
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Outlook

So.. I hope that I demonstrated effectively why I chose to work on this topic,
why YOU should consider it:

Conceptually simple method,

Non-perturbative → no ε- expansion. Relies only on generic features of
CFTs.

Much more rigorous nowadays than other methods, such as Monte Carlo.
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Thank you for your attention!
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