# Conformal Field Theories, Conformal Bootstrap and Applications 

Konstantinos Deligiannis

December 17, 2018

## Synopsis

We will concern ourselves with 2 basic questions:
(1) What are conformal field theories and why are they important in modern theoretical physics?

## Synopsis

We will concern ourselves with 2 basic questions:
(1) What are conformal field theories and why are they important in modern theoretical physics?
(2) What are their characteristics and how can they be exploited?

## The Basics I

Start with quantum mechanics...
$\left[x_{i}, p_{j}\right]=i \hbar \delta_{i j}$, position and momentum $\rightarrow$ operators.
Works for fixed number of particles ( $i, j=1, . ., N$ ), starts to "fail" when we include special relativity.

Can't demand fixed number of particles, virtual particles are created all the time $\rightarrow$ generalization: quantum field theory!

Field $\phi(x, t)$ function in spacetime $\rightarrow \infty$ degrees of freedom! Usual prescription:

- Start from Lagrangian,
- Find conjugate variables (field and a derivative),
- Promote to operators, impose commutation relations,
- Define annihilation/creation operators,
- Compute "observables", correlation functions, amplitudes..


## The Basics II

The development of quantum electrodynamics.
1937 (colourised).


## Major problem

Theories are usually pathological in high-energies. See left!

Renormalization: impose cutoff in some very large energy scale and "integrate out" some content of the theory $\rightarrow$ various couplings start depending on energy scale.
$\Rightarrow$ Quantum field theory after renormalization: $Q F T_{U V} \rightarrow Q F T_{I R}$

## The Basics III

## Important concepts in this framework:

(1) Critical points: points where couplings don't depend on energy scale $\rightarrow$ scale invariance $\rightarrow$ usually conformal invariance.
(2) Universality (e.g liquid - gas phase transition $\leftrightarrow$ ferromagnetic phase transition).
(3) Universality classes $\rightarrow$ classified by "critical exponents", constants.

Look at "the small picture" (conformal field theories, critical points) $\rightarrow$ "the big picture" (parameter space). Any QFT can be thought of as "perturbation" of a CFT!

## The Tools I

Consider scalar action,

$$
\begin{equation*}
S=\int d^{D} \times\left(\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\sum_{n \geq 3} \frac{\lambda_{n}}{n!} \phi^{n}\right) \tag{1}
\end{equation*}
$$

Spectrum of operators (scaling dimension) $\rightarrow$ first characteristic of these theories.

We want to stay away from Lagrangians from now on!
At the critical points,

$$
\Delta=\Delta_{\text {eng }}+\gamma\left(\lambda_{n}^{\star}\right)
$$

where $\Delta_{\text {eng }}$ is the dimension of an operator that we can read off the Lagrangian, $\gamma$ is the anomalous correction. In general it is non-integer $\rightarrow$ continuous spectrum $\rightarrow \ldots$ no well-defined "particles".

## The Tools II

In conformal field theories, correlation functions are extremely constrained!

$$
\begin{align*}
& \left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=\frac{c}{\left(x_{1}-x_{2}\right)^{2 \Delta}}  \tag{2a}\\
& \left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right)\right\rangle=\frac{f_{123}}{\left(x_{1}-x_{2}\right)^{\Delta_{1}+\Delta_{2}-\Delta_{3}}\left(x_{2}-x_{3}\right)^{\Delta_{2}+\Delta_{3}-\Delta_{1}}\left(x_{1}-x_{3}\right)^{\Delta_{1}+\Delta_{3}-\Delta_{2}}} \tag{2b}
\end{align*}
$$

$\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi_{4}\left(x_{4}\right)\right\rangle=\frac{g(u, v)}{\left(x_{1}-x_{2}\right)^{2 \Delta}\left(x_{3}-x_{4}\right)^{2 \Delta}}$
The coefficients $f_{123}$ on [2b] are the second characteristics of these theories. Note:

- Can't move on to higher correlators, no new info. Still, these are extremely valuable.


## The Tools III

More tools...
(1) Unitarity: $\left\langle\mathcal{O}^{\dagger}\left(t_{1}\right) . . \mathcal{O}\left(t_{1}\right)\right\rangle \geq 0$ in Lorentzian signature. Usually interested in unitary theories $\rightarrow$ strong constraints on the operator spectrum.
(2) "Operator Product Expansion" : $\mathcal{O}_{i} \mathcal{O}_{j} \sim \sum_{i j k} \mathcal{O}_{k}$ Right-hand side depends on $\Delta$ 's $\rightarrow$ everything can be built from $\left(\Delta, f_{i j k}\right)$, "CFT data".
(3) "Conformal Block Decomposition":

Apply the Operator Product Expansion on [2c].

$$
\begin{equation*}
\rightarrow g(u, v) \sim \sum_{\mathcal{O}} g_{\Delta_{\mathcal{O}}, l}(u, v) \tag{3}
\end{equation*}
$$

See that everything comes down to the conformal blocks, contribution to the 4-point function from a single "conformal multiplet".

## The Conformal Bootstrap I

Conformal Bootstrap $\rightarrow$ crossing symmetry!

## The Conformal Bootstrap I

Conformal Bootstrap $\rightarrow$ crossing symmetry!
Recall 4-point correlator,

$$
\begin{equation*}
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\frac{g(u, v)}{\left(x_{1}-x_{2}\right)^{2 \Delta}\left(x_{3}-x_{4}\right)^{2 \Delta}} \tag{4}
\end{equation*}
$$

No ordering on the left-hand side:

## The Conformal Bootstrap I

Conformal Bootstrap $\rightarrow$ crossing symmetry!
Recall 4-point correlator,

$$
\begin{equation*}
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\frac{g(u, v)}{\left(x_{1}-x_{2}\right)^{2 \Delta}\left(x_{3}-x_{4}\right)^{2 \Delta}} \tag{4}
\end{equation*}
$$

No ordering on the left-hand side:
$\rightarrow$ Implications on the function $g(u, v)$

## The Conformal Bootstrap I

Conformal Bootstrap $\rightarrow$ crossing symmetry!
Recall 4-point correlator,

$$
\begin{equation*}
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\frac{g(u, v)}{\left(x_{1}-x_{2}\right)^{2 \Delta}\left(x_{3}-x_{4}\right)^{2 \Delta}} \tag{4}
\end{equation*}
$$

No ordering on the left-hand side:
$\rightarrow$ Implications on the function $g(u, v)$
$\rightarrow$ Implications on the conformal blocks $g_{\Delta_{\mathcal{O}}, I}(u, v)$ !

## The Conformal Bootstrap I

$$
\text { Conformal Bootstrap } \rightarrow \text { crossing symmetry! }
$$

Recall 4-point correlator,

$$
\begin{equation*}
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\frac{g(u, v)}{\left(x_{1}-x_{2}\right)^{2 \Delta}\left(x_{3}-x_{4}\right)^{2 \Delta}} \tag{4}
\end{equation*}
$$

No ordering on the left-hand side:
$\rightarrow$ Implications on the function $g(u, v)$
$\rightarrow$ Implications on the conformal blocks $g_{\Delta_{\mathcal{O}}, l}(u, v)$ !
Invariance under ( $x_{1} \leftrightarrow x_{3}, x_{2} \leftrightarrow x_{4}$ ):

$$
\left\{\begin{array}{l}
\sum_{\mathcal{O}} p_{\Delta_{\mathcal{O}}, l} F_{\Delta, \Delta_{\mathcal{O}}, I}=1  \tag{5}\\
F_{\Delta, \Delta_{\mathcal{O}}, l}=\frac{v^{\Delta} g_{\Delta_{\mathcal{O}}, I}(u, v)-u^{\Delta} g_{\Delta_{\mathcal{O}}, I}(v, u)}{u^{\Delta}-v^{\Delta}}, \quad p_{\Delta_{\mathcal{O}}, l} \equiv f_{\phi \phi \mathcal{O}}^{2}>0
\end{array}\right.
$$

## The Conformal Bootstrap II

This highly non-trivial sum rule is called the bootstrap equation. Geometric interpretation [Rattazzi et al., JHEP 12 (2008) 031] $\rightarrow$ extract information in $\mathrm{D}=4$.

> Investigate when the bootstrap equation is satisfied..


Start with 2 Scalar operators of dimension $\Delta$, apply Operator Product Expansion.
Left, [Results from MSc dissertation]: Determine numerical upper bound on $f(\Delta)$ (blue and green lines) on the allowed minimum dimensions (green shaded area) of the first scalar operator present on the right-hand side of the OPE.

## Conformal Bootstrap III

Important applications to many critical phenomena: e.g 3D Ising model $\rightarrow$ world-record precision for "critical exponents" [Kos et al., JHEP 16 (2016) 036].

Input the operator spectrum correctly
 ( $\mathcal{Z}_{2}$ discrete global symmetry, 2 relevant scalars $\sigma, \epsilon ..) \rightarrow$ "pushes" the method to bring us closer to Ising. Left, [Kos et al., JHEP 11 (2014) 109]:

- Cross: Known dimensions with errors.
- Blue: Bootstrap predictions with different input.


## Outlook

So.. I hope that I demonstrated effectively why I chose to work on this topic, why YOU should consider it:

- Conceptually simple method,
- Non-perturbative $\rightarrow$ no $\epsilon$ - expansion. Relies only on generic features of CFTs.
- Much more rigorous nowadays than other methods, such as Monte Carlo.


## Thank you for your attention!

