Defects preserving $\mathcal{N}=2$ supersymmetry between two free CFTs

Vangelis Giantsos

Advisor: Prof. Ilka Brunner

Faculty of Physics
 Ludwig Maximilians Universität München

20/12/2018

Motivation

- To look into which conformal interfaces preserve $\mathcal{N}=2$ worldsheet SUSY between two theories CFT_{1} and CFT_{2}, each compactified on a D-dimensional torus.
\rightarrow Use "Folding Trick".
- Equivalently, to formulate the gluing conditions and construct the boundary states/D-branes that leave $\mathcal{N}=2$ SUSY unbroken.
\rightarrow Use "Boundary CFT".
- Why???
- Applications to:
- CFT (Gepner models)
- String Theory (D-branes in Type IIB/IIA)
- Mathematics (Kähler Geometry)
- Statistical Mechanics

The Boundary CFT approach

How to impose boundary conditions in String Theory?

- Open string: Neumann, Dirichlet at the endpoints
- Closed string: Every point equivalent...

Idea: Need a more generic way to describe boundary conditions.
Solution: Boundary CFT \rightarrow Boundary conditions encoded in boundary states, which are coherent states.

Let:

$$
S(z)=\sum_{n \in \mathbb{Z}} S_{n} z^{-n-h}, \tilde{S}(\bar{z})=\sum_{n \in \mathbb{Z}} \tilde{S}_{n} \bar{z}^{-n-h}
$$

be the generators of the symmetry algebra \mathcal{A} defined on the upper-half complex plane and ρ the automorphisms of \mathcal{A}. Relate S, \tilde{S} at the boundary, i.e.

$$
S(z)=\rho(\tilde{S}(\bar{z})), \quad z \in \mathbb{R}
$$

Boundary states

Using this relation and mapping the upper-half plane to the (unit) circle we obtain:

$$
\left.\left(S_{n}-(-1)^{h} \rho\left(\tilde{S}_{-n}\right)| | B\right\rangle\right\rangle=0, \text { for all } n \in \mathbb{Z}
$$

This is called gluing condition and $\| B\rangle\rangle$ are the boundary states. Boundary states are a linear combination of Ishibashi states, i.e.

$$
\left.\| B\rangle\rangle=\sum_{i} N_{i}|i\rangle\right\rangle,
$$

where N_{i} non-negative integers (consistency).
In every case, the conformal symmetry should be preserved. This is translated to

$$
\left(L_{n}-\tilde{L}_{-n}\right)||B\rangle\rangle=0 .
$$

!!! More symmetries \rightarrow More constraints

Free bosonic field theory $(c=1, h=1)$

- Primary fields:

$$
S \equiv \partial_{z} X_{L}(z)=-\frac{i}{2} \sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}, \quad \tilde{S} \equiv \partial_{\bar{z}} X_{R}(\bar{z})=-\frac{i}{2} \sum_{n \in \mathbb{Z}} \tilde{a}_{n} \bar{z}^{-n-1}
$$

- Symmetry algebra: $\mathcal{A} \equiv u(1), \quad \rho= \pm i d$
- Generators: $S_{n} \equiv a_{n}, \quad \tilde{S}_{n} \equiv \tilde{a}_{n}$
- Zero modes: $a_{0} \equiv p_{L}=k, \quad \tilde{a}_{0} \equiv p_{R}=k$ $\rightarrow p_{L}=p_{R}=k$ (k : center-of-mass momentum)
- Gluing condition:

$$
\left.\left.\left(a_{n} \pm \tilde{a}_{-n}\right) \| B\right\rangle\right\rangle=0
$$

- $+\rightarrow$ Neumann $(n=0 \rightarrow k=0)$
- \rightarrow Dirichlet

Circle Compactification

Purpose: Too many dimensions (26 in bosonic string, 10 in superstring).
\rightarrow Wrap some of them around small compact spaces.
Simplest case: Circle $S^{1} \cong \mathbb{R} / 2 \pi R \mathbb{Z}$ with radius R. Identify:

$$
X \sim X+2 \pi R w,
$$

where w is the winding number (no analogue in particles).
Zero modes become: $p_{L}=\frac{k}{2 R}+w R, p_{R}=\frac{k}{2 R}-w R$, with $k, w \in \mathbb{Z}!!!$
$\rightarrow p_{L} \neq p_{R}$
Gluing condition:

$$
\left(a_{n} \pm \tilde{a}_{-n}\right)||B\rangle\rangle=0
$$

Boundary states:

$$
\begin{aligned}
\| 0, w\rangle\rangle_{N} & =\frac{1}{2^{\frac{1}{4}}} \sqrt{R} \sum_{w \in \mathbb{Z}} e^{i w \tilde{\phi}_{0}} \exp \left(-\sum_{n>0} \frac{1}{n} a_{-n} \tilde{a}_{-n}\right)|0, w\rangle_{N} \\
\| k, 0\rangle\rangle_{D} & =\frac{1}{2^{\frac{1}{4}}} \frac{1}{\sqrt{R}} \sum_{k \in \mathbb{Z}} e^{-i \frac{k}{R} \phi_{0}} \exp \left(\sum_{n>0} \frac{1}{n} a_{-n} \tilde{a}_{-n}\right)|k, 0\rangle_{D}
\end{aligned}
$$

Torus compactification

D-Torus: $T^{D} \cong \mathbb{R}^{D} / 2 \pi \Lambda_{D}$. Identify:

$$
X^{I} \sim X^{I}+2 \pi \sum_{i=1}^{D} w^{i} e_{i}^{I}, \quad w^{i} \in \mathbb{Z}
$$

Reduce to $D=2 \rightarrow T^{2} \cong S_{R_{1}}^{1} \times S_{R_{2}}^{1}$
This is a CFT with $c=2$.
\rightarrow Two real bosons, each compactified on a circle.
Zero modes:

$$
p_{L}^{\mu}=\frac{k_{\mu}}{2 R_{\mu}}+w_{\mu} R_{\mu}, p_{R}^{\mu}=\frac{k_{\mu}}{2 R_{\mu}}-w_{\mu} R_{\mu}, \quad \mu=1,2
$$

Boundary states for rotated branes

Gluing condition:

$$
\left.\left.\left[\binom{a_{n}^{1}}{a_{n}^{2}}+O\binom{\tilde{a}_{-n}^{1}}{\tilde{a}_{-n}^{2}}\right] \| B\right\rangle\right\rangle=0, \quad O=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Rotate: D1-brane rotated by an angle θ. Gluing condition becomes:

$$
\left.\left.\left[\binom{a_{n}^{1}}{a_{n}^{2}}+\mathcal{O}\binom{\tilde{a}_{-n}^{1}}{\tilde{a}_{-n}^{2}}\right] \| B\right\rangle\right\rangle=0, \quad \mathcal{O}=\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right) \in O(2)
$$

Rational rotation ($0<\theta<\frac{\pi}{2}$):

$$
\tan \theta=\frac{N R_{2}}{M R_{1}}, \quad N, M \in \mathbb{N} \quad \& \text { coprime }
$$

Boundary state:

$$
\| B\rangle\rangle=\sqrt{\frac{N M}{\sin 2 \theta}} \sum_{k, w \in \mathbb{Z}} e^{i k \alpha-i w \beta} \exp \left(-\sum_{n>0} \frac{1}{n} a_{-n}^{\mu} \tilde{a}_{-n}^{\nu} \mathcal{O}_{\mu \nu}\right)|k N, w M ;-k M, w N\rangle
$$

Free fermionic field theory $(c=1 / 2, h=1 / 2)$

Need also fermions to talk about SUSY!

- Primary fields: $\Psi(z)=\sum_{r} \psi_{r} z^{-r-\frac{1}{2}}, \quad \tilde{\Psi}(\bar{z})=\sum_{r} \tilde{\psi}_{r} \bar{z}^{-r-\frac{1}{2}}$
- Gluing condition:

$$
\left.\left.\left(\psi_{r}-i \eta \rho\left(\tilde{\psi}_{-r}\right)\right) \| B\right\rangle\right\rangle=0
$$

where $\eta= \pm 1$ (+: Neveu-Schwarz, -: Ramond).
For a two-fermion theory:

$$
\left.\left.\left[\binom{\psi_{r}^{1}}{\psi_{r}^{2}}+i \mathcal{O}_{F}\binom{\tilde{\psi}_{-r}^{1}}{\tilde{\psi}_{-r}^{2}}\right] \| B\right\rangle\right\rangle=0, \quad \mathcal{O}_{F} \in O(2)
$$

- Boundary state:

$$
\| B\rangle\rangle_{\mathrm{NS}}=\exp \left(-i \sum_{r \in \mathbb{N}-\frac{1}{2}} \psi_{-r}^{\mu} \tilde{\psi}_{-r}^{\nu}\left(\mathcal{O}_{F}\right)_{\mu \nu}\right)|0\rangle_{\mathrm{NS}}
$$

! Omit the discussion for the Ramond sector.

$\mathcal{N}=1$-supersymmetric free field theory $(c=3 / 2)$

Combine the previous results:
\rightarrow Two bosons and two fermions on the upper-half complex plane.

- Symmetry algebra: $\mathcal{N}=1$ superconformal algebra
- Generators: $T(h=2), G\left(h=\frac{3}{2}\right)$
- Gluing conditions:

$$
\begin{aligned}
\left.\left.\left(L_{n}-\tilde{L}_{-n}\right) \| B\right\rangle\right\rangle & =0 \\
\left.\left.\left(G_{r}-i \eta \tilde{G}_{-r}\right) \| B\right\rangle\right\rangle & =0
\end{aligned}
$$

- Boundary state:

$$
\left.\left.\| B\rangle\rangle=| | B\rangle\rangle_{\text {bos }} \otimes \| B\right\rangle\right\rangle_{\text {ferm }}
$$

$\mathcal{N}=2$-supersymmetric free field theory $(c=3)$

! Works only for even spacetime dimensions.
Question: Which $\mathcal{N}=1$ boundary states preserve $\mathcal{N}=2$ SUSY as well? Preliminaries: Combine two real bosons into a complex boson (complexification). Same for the fermions ($i=1,2$):

$$
\begin{array}{ll}
X^{+i}=\frac{1}{\sqrt{2}}\left(X^{2 i-1}+i X^{2 i}\right), & X^{-i}=\frac{1}{\sqrt{2}}\left(X^{2 i-1}-i X^{2 i}\right) \\
\Psi^{+i}=\frac{1}{\sqrt{2}}\left(\Psi^{2 i-1}+i \Psi^{2 i}\right), & \Psi^{-i}=\frac{1}{\sqrt{2}}\left(\Psi^{2 i-1}-i \Psi^{2 i}\right)
\end{array}
$$

Primary fields (left sector):

$$
\begin{aligned}
\partial X^{+i} & =-\frac{i}{2} \sum_{n>0} a_{n}^{+i} z^{-n-1}, \quad \partial X^{-i}=-\frac{i}{2} \sum_{n>0} a_{n}^{-i} z^{-n-1} \\
\Psi^{+i} & =\sum_{r>0} \psi_{r}^{+i} z^{-r-\frac{1}{2}}, \quad \Psi^{-i}=\sum_{r>0} \psi_{r}^{-i} z^{-r-\frac{1}{2}}
\end{aligned}
$$

$\mathcal{N}=2$ gluing conditions

- Symmetry algebra: $\mathcal{N}=2$ superconformal algebra
- Generators: T, G^{+}, G^{-}, J
- Gluing conditions (B-type):

$$
T=\tilde{T}, \quad G^{+}=\tilde{G}^{+}, \quad G^{-}=\tilde{G}^{-}, \quad J=\tilde{J}
$$

- Equivalently:

$$
\begin{aligned}
\left.\left.\left(L_{n}-\tilde{L}_{-n}\right) \| B\right\rangle\right\rangle & =0 \\
\left.\left.\left(G_{r}^{+}-i \eta \tilde{G}_{-r}^{+}\right) \| B\right\rangle\right\rangle & =0 \\
\left.\left.\left(G_{r}^{-}-i \eta \tilde{G}_{-r}^{-}\right) \| B\right\rangle\right\rangle & =0 \\
\left.\left.\left(J_{n}+\tilde{J}_{-n}\right) \| B\right\rangle\right\rangle & =0
\end{aligned}
$$

- A-type \Leftrightarrow B-type (mirror symmetry)

B-type gluing conditions

B-type gluing conditions:

$$
\begin{aligned}
& \left.\left.\left[\binom{a_{n}^{+1}}{a_{n}^{+2}}+\Omega\binom{\tilde{a}_{-n}^{+1}}{\tilde{a}_{-n}^{+2}}\right] \| B\right\rangle\right\rangle=0 \\
& \left.\left.\left[\binom{a_{n}^{-1}}{a_{n}^{-2}}+\Omega^{\dagger}\binom{\tilde{a}_{-n}^{-1}}{\tilde{a}_{-n}^{-2}}\right] \| B\right\rangle\right\rangle=0 \\
& \left.\left.\left[\binom{\psi_{r}^{+1}}{\psi_{r}^{+2}}+\Omega_{\mathcal{F}}\binom{\tilde{\psi}_{-r}^{+1}}{\tilde{\psi}_{-r}^{+2}}\right] \| B\right\rangle\right\rangle=0 \\
& \left.\left.\left[\binom{\psi_{r}^{-1}}{\psi_{r}^{-2}}+\Omega_{\mathcal{F}}^{\dagger}\binom{\tilde{\psi}_{-r}^{-1}}{\tilde{\psi}_{-r}^{-2}}\right] \| B\right\rangle\right\rangle=0
\end{aligned}
$$

Here: $\Omega, \Omega_{\mathcal{F}} \in U(2) \hookrightarrow O(4)$.

B-type boundary states (NS-sector)

- Bosonic part:

$$
||B\rangle\rangle_{\text {bos }}=\sum_{i} N_{i} \exp \left\{-\sum_{n>0} \frac{1}{n}\left(a_{-n}^{+i} \tilde{a}_{-n}^{-j} \Omega_{i j}+a_{-n}^{-i} \tilde{a}_{-n}^{+j} \Omega_{i j}^{\dagger}\right)\right\}\left|k^{+}, k^{-}, w^{+}, w^{-}\right\rangle,
$$

where

$$
\left|k^{+}, k^{-}, w^{+}, w^{-}\right\rangle=\left|k N_{1}^{+}, k N_{1}^{-}, w M_{1}^{+}, w M_{1}^{-} ;-k M_{1}^{+},-k M_{1}^{-}, w N_{1}^{+}, w N_{1}^{-}\right\rangle
$$

- Fermionic part:

$$
||B\rangle\rangle_{\mathrm{NS}}=\sum_{i} N_{i} \exp \left\{-i \sum_{r \in \mathbb{N}-\frac{1}{2}}\left(\psi_{-r}^{+i} \tilde{\psi}_{-r}^{-j}\left(\Omega_{\mathcal{F}}\right)_{i j}+\psi_{-r}^{-i} \tilde{\psi}_{-r}^{+j}\left(\Omega_{\mathcal{F}}\right)_{i j}^{\dagger}\right)\right\}|0\rangle_{\mathrm{NS}}
$$

- Full boundary state: $\left.\left.\left.\left.\| B\rangle\rangle_{\text {full }}=| | B\right\rangle\right\rangle_{\text {bos }} \otimes \| B\right\rangle\right\rangle_{\text {NS }}$

The unfolding procedure

Conformal interfaces can be described in two equivalent ways:
(1) As boundary conditions in the tensor-product theory $\mathrm{CFT}_{1} \otimes \mathrm{CFT}_{2}^{*}$.
(2) As operators mapping the states of CFT_{2} to those of CFT_{1}.

CFT_{2}

Figure 1: Foding trick.

Figure 1: The folding trick
Unfolding: Hermitean conjugation and exchange of left with right movers in CFT_{2}.

Free-boson interfaces preserving $u(1)^{2}$

Conformal invariance:

$$
\left(L_{n}-\tilde{L}_{-n}\right)||B\rangle\rangle=0
$$

Equivalently: $I_{1,2}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ commutes with $\left\{L_{n}-\tilde{L}_{-n}\right\}, n \in \mathbb{Z}$. This means:

$$
\binom{a_{n}^{1}}{-\tilde{a}_{-n}^{1}} I_{1,2}=I_{1,2} \Lambda\binom{a_{n}^{2}}{-\tilde{a}_{-n}^{2}}, \text { for } \Lambda \in O(1,1)
$$

Fold CFT_{2} to CFT_{2}^{*} :

$$
\binom{a_{n}^{2}}{\tilde{a}_{n}^{2}} \mapsto\binom{-\tilde{a}_{-n}^{2}}{-a_{-n}^{2}}, k \rightarrow-k
$$

After folding, the interface is written:

$$
\left.\left.\left[\binom{a_{n}^{1}}{-\tilde{a}_{-n}^{1}}+\Lambda\binom{\tilde{a}_{-n}^{2}}{-a_{n}^{2}}\right] \| I_{1,2}\right\rangle\right\rangle=0
$$

Free-boson interfaces preserving $u(1)^{2}$ (continued)

After some linear algebra:

$$
\begin{gathered}
\left.\left.\left[\binom{a_{n}^{1}}{a_{n}^{2}}+\mathcal{O}\binom{\tilde{a}_{-n}^{1}}{\tilde{a}_{-n}^{2}}\right] \| I_{1,2}\right\rangle\right\rangle=0, \text { where } \mathcal{O} \in O(2) \\
\mathcal{O}=\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right) \Leftrightarrow \Lambda= \pm\left(\begin{array}{cc}
\cosh \alpha & \sinh \alpha \\
\sinh \alpha & \cosh \alpha
\end{array}\right),
\end{gathered}
$$

where $\tanh \alpha=\cos 2 \theta$.
The gluing matrices Λ and \mathcal{O} are inverse to each other!
!!! In higher dimensions D (2D bosons) the generalization is obvious; $\Lambda \in O(D, D)$ and $\mathcal{O} \in O(2 D)$.

Interface operator

Recall:

$$
||B\rangle\rangle=\sum_{i} N_{i} \exp \left(-\sum_{n>0} \frac{1}{n}\left(a_{-n}^{\mu} \tilde{a}_{-n}^{\nu} \mathcal{O}_{\mu \nu}\right)\right)|k N, w M ;-k M, w N\rangle
$$

Unfold...For $n>0$:

$$
I_{1,2}^{n, \text { bos }}=\sum_{i} N_{i} \exp \left(\sum_{n>0} \frac{1}{n}\left(a_{-n}^{1} \mathcal{O}_{11} \tilde{a}_{-n}^{1}-a_{-n}^{1} \mathcal{O}_{12} a_{n}^{2}-\tilde{a}_{-n}^{1} \mathcal{O}_{21}^{t} \tilde{a}_{n}^{2}+a_{n}^{2} \mathcal{O}_{22}^{t} \tilde{a}_{n}^{2}\right)\right)
$$

For $n=0$:

$$
I_{1,2}^{0, b o s}=|k N, w M\rangle\langle k M, w N|
$$

Interface operator:

$$
I_{1,2}^{\mathrm{bos}}=\prod_{n \geq 0} I_{1,2}^{n, \mathrm{bos}}
$$

$\mathcal{N}=1$-supersymmetric interfaces

Condition:

$$
\left(G_{r}^{1}-i \eta_{S}^{1} \tilde{G}_{-r}^{1}\right) I_{1,2}=\eta I_{1,2}\left(G_{r}^{2}-i \eta_{S}^{2} \tilde{G}_{-r}^{2}\right)
$$

Equivalently:

$$
\binom{\psi_{r}^{1}}{-i \tilde{\psi}_{-r}^{1}} I_{1,2}=I_{1,2} \eta \Lambda_{F}\binom{\psi_{r}^{2}}{-i \tilde{\psi}_{-r}^{2}},
$$

where

$$
\Lambda_{F}=\eta\left(\begin{array}{cc}
1 & 0 \\
0 & \eta_{S}^{1}
\end{array}\right) \Lambda\left(\begin{array}{cc}
1 & 0 \\
0 & \eta_{S}^{2}
\end{array}\right) \in O(1,1) .
$$

Fold CFT_{2} to CFT_{2}^{*} :

$$
\binom{\psi_{r}^{2}}{\tilde{\psi}_{r}^{2}} \mapsto\binom{-i \tilde{\psi}_{2}^{2}}{i \psi_{-r}^{2}}
$$

$\mathcal{N}=1$-supersymmetric interfaces (continued)

After folding, the interface is written:

$$
\left.\left.\left[\binom{\psi_{r}^{1}}{\tilde{\psi}_{-r}^{1}}+i \Lambda_{F}\binom{\tilde{\psi}_{-r}^{2}}{-\psi_{r}^{2}}\right] \| I_{1,2}\right\rangle\right\rangle=0
$$

Equivalently:

$$
\left.\left.\left[\binom{\psi_{r}^{1}}{\psi_{r}^{2}}+i \mathcal{O}_{F}\binom{\tilde{\psi}_{-r}^{1}}{\tilde{\psi}_{-r}^{2}}\right] \| I_{1,2}\right\rangle\right\rangle=0
$$

Note: $\Lambda_{F} \in O(1,1), \mathcal{O}_{F} \in O(2)$ and are inverse to each other.

Note: Both CFTs in the NS sector or in the R sector!

Interface operator

Recall:

$$
\| B\rangle\rangle_{\mathrm{NS}}=\exp \left(-i \sum_{r \in \mathbb{N}-\frac{1}{2}} \psi_{-r}^{\mu} \tilde{\psi}_{-r}^{\nu}\left(\mathcal{O}_{F}\right)_{\mu \nu}\right)|0\rangle_{\mathrm{NS}}
$$

Unfold...For $r>0$:
$I_{1,2}^{r, \text { ferm }}=\exp \left(i \psi_{-r}^{1}\left(\mathcal{O}_{F}\right)_{11} \tilde{\psi}_{-r}^{1}-\psi_{-r}^{1}\left(\mathcal{O}_{F}\right)_{12} \psi_{r}^{2}-\tilde{\psi}_{-r}^{1}\left(\mathcal{O}_{F}\right)_{21}^{t} \tilde{\psi}_{r}^{2}-i \psi_{r}^{2}\left(\mathcal{O}_{F}\right)_{22}^{t} \tilde{\psi}_{r}^{2}\right)$
For $r=0$:

$$
I_{1,2}^{0, N S}=|0\rangle{ }_{\mathrm{NS}}^{1} \stackrel{2}{\mathrm{NS}}\langle 0|
$$

Interface operator:

$$
I_{1,2}^{\mathrm{ferm}}=\prod_{r>0} I_{1,2}^{r, \text { ferm }} I_{1,2}^{0, \text { ferm }}
$$

Complete interface operator:

$$
I_{1,2}^{\mathrm{full}}=I_{1,2}^{\mathrm{bos}} \otimes I_{1,2}^{\mathrm{ferm}}
$$

$\mathcal{N}=2$-supersymmetric interfaces

Work analogously...
Unfold... Bosons:

$$
\begin{aligned}
& \binom{a_{n}^{+1}}{-\tilde{a}_{-n}^{+1}} I_{1,2}^{\mathrm{bos}}=I_{1,2}^{\mathrm{bos}} \mathcal{L}\binom{a_{n}^{+2}}{-\tilde{a}_{-n}^{+2}} \\
& \binom{a_{n}^{-1}}{-\tilde{a}_{-n}^{-1}} I_{1,2}^{\mathrm{bos}}=I_{1,2}^{\mathrm{bos}} \mathcal{L}^{\dagger}\binom{a_{n}^{-2}}{-\tilde{a}_{-n}^{-2}}
\end{aligned}
$$

Fermions:

$$
\begin{aligned}
& \binom{\psi_{r}^{+1}}{-i \tilde{\psi}_{-r}^{+1}} I_{1,2}^{\text {ferm }}=I_{1,2}^{\text {ferm }} \mathcal{L}_{\mathcal{F}}\binom{\psi_{r}^{+2}}{-i \tilde{\psi}_{-r}^{+2}} \\
& \binom{\psi_{r}^{-1}}{-i \tilde{\psi}_{-r}^{-1}} I_{1,2}^{\text {ferm }}=I_{1,2}^{\text {ferm }} \mathcal{L}_{\mathcal{F}}^{\dagger}\binom{\psi_{r}^{-2}}{-i \tilde{\psi}_{-r}^{-2}}
\end{aligned}
$$

Note: $\mathcal{L}, \mathcal{L}_{\mathcal{F}} \in U(1,1)$ and $\Omega, \Omega_{\mathcal{F}} \in U(2)$
In higher dimensions: $\mathcal{L}, \mathcal{L}_{\mathcal{F}} \in U(D, D)$ and $\Omega, \Omega_{\mathcal{F}} \in U(2 D)$.

Symmetry defects

Conformal interface: $\mathrm{CFT}_{1} \neq \mathrm{CFT}_{2}$
Defect: $\mathrm{CFT}_{1}=\mathrm{CFT}_{2}$
Symmetry defects: Defects preserving symmetries between toroidal CFTs (torus automorphisms)
\rightarrow topological (preserve full $u(1)^{2 D}$ symmetry)
Examples:

- Trivial defect ($\theta=\frac{\pi}{4}$: Diagonal D1-brane \rightarrow total transmission)
- \mathbb{Z}_{2} symmetry
- \mathbb{Z}_{3} symmetry
- T-duality

The End

Thank you for your attention!

