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Introduction and Motivation



CFTs in nontrivial geometries: generalities

How do CFTs in nontrivial geometries depend on their data in

the plane?

Conformal transformations of d-dimensional flat space (i.e. with

metric ηµν) are changes of coordinates (reparametrizations)

xµ 7→ x ′µ(x) that preserve the norm of vectors up to a scale factor.

• E.g. Poincare transformations of flat space are reparametrizations

that preserve exactly the norm of vectors. The line element ds2 is the

norm of the vector dxµ. Under xµ 7→ x ′µ(x) we have

xµ 7→ x ′µ : ds2 = ηµνdx
µdxν 7→ ds ′2 = ηµνdx

′µdx ′ν ≡ ds2

⇒ ηµν
∂x ′µ

∂xρ
∂x ′ν

∂xσ
= ηρσ
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CFTs in nontrivial geometries: generalities

• For conformal transformations we demand

xµ 7→ x ′µ : ds2 = ηµνdx
µdxν 7→ ds ′2 = ηµνdx

′µdx ′ν ≡ Ω2(x)ds2

⇒ ηµν
∂x ′µ

∂xρ
∂x ′ν

∂xσ
= Ω2(x)ηρσ

• Hence, conformal transformations are equivalent to a local rescaling

of the flat metric ηµν 7→ Ω2(x)ηµν .

• Notice that:

either we work with the coordinates x ′µ and metric ηµν ,

or we work in the original coordinates xµ and the rescaled metric

Ω2(x)ηµν .

• In d = 2 the transformed coordinates x ′µ(x) are general analytic

functions of xµ.

• In d > 2 x ′µ(x) are at most quadratic in xµ.
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CFTs in nontrivial geometries: generalities

CFTs are those QFTs that have a number (sometime finite in d = 2,

certainly infinite in d > 2) of quasiprimary local operators O(x) that

under conformal transformations behave as

xµ 7→ x ′µ : O(x)
∣∣∣
η
7→ O′(x ′)

∣∣∣
η

= Ω∆(x)O(x ′)
∣∣∣
η
≡ Ω∆(x)O(x)

∣∣∣
Ω2η

where ∆ is the scaling dimension. We considered scalars for simplicity.

• The conformal Ward identities express the invariance of correlation

functions under conformal transformations

xµ 7→ x ′µ : 〈O(x)...〉
∣∣∣
η
7→〈O′(x ′)...〉

∣∣∣
η

= Ω∆(x)〈O(x ′)...〉
∣∣∣
η

≡ Ω∆(x)〈O(x)...〉
∣∣∣
Ω2η
≡ 〈O(x)...〉

∣∣∣
η

• The simplest example to see how this works is the 2pt function of

scalar field φ(x) with dimension ∆ under the scale transformation

xµ → x ′µ = λxµ for which Ω = λ. We have

〈φ(x1)φ(x2)〉 =
1

x2∆
12

→ 〈φ′(x ′1)φ′(x ′2)〉 = λ2∆ 1

(x ′12)2∆
≡ 〈φ(x1)φ(x2)〉
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CFTs in nontrivial geometries: example in d = 2

Therefore, CFT correlators in the nontrivial - but conformally

flat - geometry Ω2ηµν are fully determined by the flat space

correlators.

• Consider the 2-pt function of scalars in flat space. Going to spherical

coordinates ~x → (r ,Ωd−1) with ds2 = dr2 + r2dΩ2
d−1 one has

〈O(~x1)O(~x2)〉 =
1

~x2∆
12

→

→ 〈O(r1, θ)O(r2, 0)〉 =
1

(~r1 − ~r2)2∆
=

1

(r2
1 + r2

2 − 2r1r2 cos θ)∆

• Next, if there was a conformal transformation of flat space with

metric ηµν to the metric Ω2(x)ηµν , then Ward identity would give us

[Ω(r1, θ)Ω(r2, 0)]−∆〈O(r1, θ)O(r2, 0)〉
∣∣∣
η

= 〈O(r1, θ)O(r2, 0)〉
∣∣∣
Ω2η

In other words, knowledge of the 2-pt function in flat space with

metric ηµν fully determines the 2-pt function on the conformally-flat

metric Ω2(x)ηµν .

5



CFTs in nontrivial geometries: example in d = 2

Therefore, CFT correlators in the nontrivial - but conformally

flat - geometry Ω2ηµν are fully determined by the flat space

correlators.

• Consider the 2-pt function of scalars in flat space. Going to spherical

coordinates ~x → (r ,Ωd−1) with ds2 = dr2 + r2dΩ2
d−1 one has

〈O(~x1)O(~x2)〉 =
1

~x2∆
12

→

→ 〈O(r1, θ)O(r2, 0)〉 =
1

(~r1 − ~r2)2∆
=

1

(r2
1 + r2

2 − 2r1r2 cos θ)∆

• Next, if there was a conformal transformation of flat space with

metric ηµν to the metric Ω2(x)ηµν , then Ward identity would give us

[Ω(r1, θ)Ω(r2, 0)]−∆〈O(r1, θ)O(r2, 0)〉
∣∣∣
η

= 〈O(r1, θ)O(r2, 0)〉
∣∣∣
Ω2η

In other words, knowledge of the 2-pt function in flat space with

metric ηµν fully determines the 2-pt function on the conformally-flat

metric Ω2(x)ηµν .

5



CFTs in nontrivial geometries: example in d = 2

Therefore, CFT correlators in the nontrivial - but conformally

flat - geometry Ω2ηµν are fully determined by the flat space

correlators.

• Consider the 2-pt function of scalars in flat space. Going to spherical

coordinates ~x → (r ,Ωd−1) with ds2 = dr2 + r2dΩ2
d−1 one has

〈O(~x1)O(~x2)〉 =
1

~x2∆
12

→

→ 〈O(r1, θ)O(r2, 0)〉 =
1

(~r1 − ~r2)2∆
=

1

(r2
1 + r2

2 − 2r1r2 cos θ)∆

• Next, if there was a conformal transformation of flat space with

metric ηµν to the metric Ω2(x)ηµν , then Ward identity would give us

[Ω(r1, θ)Ω(r2, 0)]−∆〈O(r1, θ)O(r2, 0)〉
∣∣∣
η

= 〈O(r1, θ)O(r2, 0)〉
∣∣∣
Ω2η

In other words, knowledge of the 2-pt function in flat space with

metric ηµν fully determines the 2-pt function on the conformally-flat

metric Ω2(x)ηµν .
5



CFTs in nontrivial geometries: example in d = 2

• In d = 2 all analytic transformations are conformal transformations

since for ds2 = dx2 + dy2 = dzdz̄ , z = x + iy , z̄ = x − iy and

under the general analytic transformations z 7→ z ′ = f (z),

z̄ 7→ z̄ ′ = f̄ (z̄) we have

ds2 7→ ds ′2 = ∂z f (z)∂z̄ f̄ (z̄)dzdz̄ ≡ Ω2(z , z̄)ds2

• Choosing f (z) = L ln(z/L) and f̄ (z̄) = L ln(z̄/L) we find

ds2 7→ ds ′2 =
L2

zz̄
dzdz̄ =

L2

x2 + y2
[dx2 + dy2] ≡ L2

r2
[dr2 + r2dθ2]

• Now, we observe the the metric shown in the last equality is actually

the reparametrization of the metric on R× S1 i.e. under

r = Le
ρ
L ⇒ ds2 ≡ L2

r2
[dr2 + r2dθ2] = dρ2 + L2dθ2
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CFTs in nontrivial geometries: example in d = 2

• So, the Ward identity gives

〈O(r1, θ)O(r2, 0)〉
∣∣∣
Ω2η
≡ 〈O(ρ1, θ)O(ρ2, 0)〉

∣∣∣
R×S1

=
1

L2∆

1(
2 cosh ρ1−ρ2

L − 2 cos θ
)∆

• The metric reparametrization above generalises for all d > 2 as

r = Le
ρ
L ⇒ ds2 ≡ L2

r2
[dr2 + r2dΩ2

d−1] = dρ2 + L2dΩ2
d−1

However, there is no conformal transformation of flat d-dimensional

space with Ω2(r ,Ωd−1) = L2/r2, so CFT correlation functions on

R× Sd−1 cannot be determined by those on Rd .
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CFTs in nontrivial geometries: example in d = 2

• One possibility is to consider Weyl invariant QFTs. These are QFTs

that have operators O(x) with a definite behaviour under general

local Weyl rescalings of the flat metric

ηµν 7→ Ω2(x)ηµν ⇒ O(x) 7→ O′(x) = Ω∆(x)O(x)

• The above behaviour is independent of the spin of the operator O(x).

This leads to the corresponding Ward identities expressing Weyl

invariance of correlation functions as

Ω∆(x)〈O(x)...〉
∣∣∣
Ω2η
≡ 〈O(x)...〉

∣∣∣
η

(1)

• So, for Weyl invariant theories

〈O(r1, ê1)O(r2, ê2)〉
∣∣∣
Ω2η
≡ 〈O(ρ1, ê1)O(ρ2, ê2)〉

∣∣∣
R×Sd−1

=
1

L2∆

1(
2 cosh ρ1−ρ2

L − 2ê1 · ê2

)∆
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CFTs in nontrivial geometries: lesson 1

In two-dimensional CFTs correlators in the thermal geometry

R× S1
L are fully determined by those on R2.

In d > 2 it appears that only for Weyl invariant theories

correlators in R× Sd−1
L are fully determined by those on Rd .

However, the thermal geometries S1
L × Rd−1, although confor-

mally flat, are not related neither by a conformal transformation

nor by a Weyl rescaling to Rd for d > 2.

We generally need additional data to describe CFTs in

thermal geometries for d > 2.
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The conformal OPE in nontrivial

geometries



The conformal OPE in nontrivial geometries: generalities

• The conformal OPE is the statement that quasiprimary operators

form a complete basis for operator products in a CFT i.e. for scalars

φ(x1)φ(x2) =
1

x2∆
12

1 +
∑
Os

1

x
2(∆−∆s

2 + s
2 )

12

[x12 · Os(x2)]

where [x12 · Os(x2)] denotes the spin-s, dimension-∆s contribution

with all its descendants.

• Using the OPE for correlators in nontrivial geometries we could

evaluate them if we knew the 1-pt functions 〈Os(x)〉 for the relevant

quasiprimary operators.

• Nevertheless, for 1-pt functions we generically have
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The conformal OPE in nontrivial geometries: d = 2 example

• Since since all 1-pt functions vanish on Rd , namely 〈O(x)〉
∣∣∣
η

= 0 and

in d = 2 the plane is conformally related to the thermal geometry it

would appear that all 1-pt functions of quasiprimary operators vanish.

• Nevertheless, in d = 2 there exist operators transforming anomalously

i.e. the energy momentum tensor

T (z)→ T ′(z ′) = [f ′(z)]2T (z ′)+
c

12
{f (z), z}1 , {f , z} =

f ′′′f ′ − 3
2 f
′′2

f ′2

• Using the above one obtains

〈T (z)〉R×S1
β

= − c

24

1

L2

• We conclude that thermal correlation functions in d = 2 do receive

contributions from nontrivial 1pt functions of non-quasiprimary

operators i.e. from conformal anomalies. Setting u = ρ cosφ and

Lθ = ρ sinφ the thermal 2-pt function becomes [J. Cardy (1986)]

〈φ(ρ, φ)φ(0, 0)〉 =
1

ρ2∆φ

[
1− ∆φ

12

ρ2

L2
cos 2φ+ · · ·

]

11
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The conformal OPE in nontrivial geometries: S1
β × Rd−1

• In the S1
β ×Rd−1 geometry the 1-pt functions of scalar quasiprimaries

can only depend on a single parameter as

〈O(x)〉S1
β×Rd−1 = 〈O(0)〉S1

β×Rd−1 =
bO
β∆O

• For SO(d) irreducible tensors we have

〈Tµν...(0)〉S1
β×Rd−1 =

bT
β∆T

(êµêν ...− traces)

where xµ = (τ, x) are coordinates on S1
β × Rd−1 with period

τ ∼ τ + β, r = |x | and θ ∈ [0, π] is a polar angle when Rd−1 is

written in spherical coordinates. êµ are unit vectors in the τ -direction.

• Then, the thermal two-point function takes the generic form

〈φ(x)φ(0)〉β ≡ g(r , cos θ) =
∑
Os

aOs

(
r

β

)∆Os Cνs (cos θ)

r2∆φ

12



The conformal OPE in nontrivial geometries: S1
β × Rd−1

• In the S1
β ×Rd−1 geometry the 1-pt functions of scalar quasiprimaries

can only depend on a single parameter as

〈O(x)〉S1
β×Rd−1 = 〈O(0)〉S1

β×Rd−1 =
bO
β∆O

• For SO(d) irreducible tensors we have

〈Tµν...(0)〉S1
β×Rd−1 =

bT
β∆T
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The conformal OPE in nontrivial geometries: S1
β × Rd−1

• Cνs (cos θ) are Gegenbauer polynomials with ν = d/2− 1.

• The coefficients aOs are given by

aOs =
s!

2s(ν)s

gφφOsbOs

COs

with COs and gφφOs the corresponding 2-pt and 3-pt function

coefficients, and (a)n the Pochhammer symbol.

• The unit operator 1 is the unique operator with dimension zero, and

here

a1 =
22∆φ−dΓ(∆φ)

π
d
2 Γ( d

2 −∆φ)

so that the momentum-space two-point function is unit-normalized.

13
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The conformal OPE in nontrivial geometries: d = 2 example

• The thermal 2-pt function gives (there is an extra factor of 2 in the

normalization of the d = 2 Gegenbauers)

aT =
gTbT
CT

= −∆φ

12

• Using the Ward identity we then find

gT =
d∆φ

d − 1
⇒ bT = −CT

24

confirming that the e.m. tensor coefficient CT coincides with the

conformal anomaly c in d = 2.

• There is yet another coefficient c̃ related to thermal 1-pt functions

〈Tττ 〉R×Sd−1
β

= −(d − 1)[fβ − f∞] =
bT
βd

= −2(d − 1)
ζ(d)

βd
c̃

where fβ is the free energy density. For d = 2 we see that c̃ ∼ c .

14
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The conformal OPE in nontrivial geometries: lesson 2

The conformal OPE can be used to study correlators in non-

trivial geometries.

For general d > 2 we need additional data, in the form of 1-pt

functions, to determine the correlators.

Nevertheless, in d = 2 it appears as if the thermal correlator

is fully determined by the plane result. This is a consequence

of the fact that the only nonzero 1-pt functions are those of

anomalously transforming operators, and they depend on the

central charge. The latter cancels in the OPE.
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The OPE inversion formula



The OPE inversion formula: the Euclidean formula

• Further information regarding the thermal 2-pt function can be

obtained using an OPE inversion formula. [L. Iliesiu et. al. 1802.10266 (JHEP)]

• Complexifying ∆ one defines the spectral function a(∆, s) via

g(r , cos θ) =
∑
s

∮ −ε+i∞

−ε−i∞

d∆

2πi
a(∆, s)

Cνs (cos θ)

r2∆φ−∆

whose poles at ∆ = ∆Os with residues −aOs yield the physical

spectrum.

• Assuming that the physical poles lie on the right of the imaginary axis

one can close the contour clockwise for r < 1 (we set β = 1 from

now on) if a(∆, s) does not grow exponentially at infinity.
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The OPE inversion formula: the Euclidean formula

• We can then use the orthogonality of Gegenbauer polynomials to

project on a spin-s state and then integrate with a suitable power in

the region of convergence r ∈ [0, 1] to obtain a(∆, s) as

a(∆, s) =
1

Ns,ν

∫ 1

0

dr

r∆−2∆φ+1

∫ 1

−1

dx (1− x2)ν−
1
2 Cνs (x)g(r , x)

where

x = cos θ , Ns,ν =
21−2νπΓ(s + 2ν)

(s + ν)Γ(s + 1)Γ2(ν)

• This is termed Euclidean inversion formula.
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The OPE inversion formula: the Lorenzian formula

• Writing x = cos θ = (w + 1/w)/2 with w = e iθ one can transform

the Euclidean formula into a contour integral over the unit circle in

the complex-w plane.

• To exploit further the analytic structure of the 2-pt function

g(r , cos θ) one would like to allow w to explore the full complex

plane. This can be done by a suitable complexification of the

Euclidean variables r , θ, defining z = rw and z̄ = r/w which are now

independent real variables.

• As a function of w , i.e. in the w -plane, g(r ,w) has the cuts

(−∞,−1/r), (−r , 0), (0, r) and (1/r ,∞). One also has to assume

that it does not grow faster than w s0 (resp. 1/w s0 ) for large (resp.

small) w for some constant s0 > 0.

18
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The OPE inversion formula: the Lorenzian formula

• Moreover, one needs to use the analytic extension of the Gegenbauer

polynomials to the whole complex plane as [M. Costa et. al. 1209.4355 (JHEP)]

Cνs (w) =
Γ(s + 2ν)

Γ(ν)Γ(s + ν + 1)
(Fs(1/w)e iνπ + Fs(w)e−iνπ)

where

Fs(w) = w s+2ν
2F1(s + 2ν, ν; s + ν + 1;w2)
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The OPE inversion formula: the Lorenzian formula

• Then, the integral giving a(∆, s) will receive contributions from the

discontinuities across the cuts of g(r ,w) as well as from the arcs at

infinity. The final result is

a(∆, s) = aDisc(∆, s) + θ(s0 − s) aarcs(∆, s)

where

aDisc(∆, s) = Ks

∫ 1

0

dz̄

z̄

∫ ∞
1

dz

z

[
(zz̄)∆φ−∆

2 −ν

× (z − z̄)2νFs

(√
z̄

z

)
Disc[g(z , z̄)]

]
with

Ks = (1 + (−1)s)
Γ(s + 1)Γ(ν)

4πΓ(s + ν)

• The discontinuity relevant for the evaluation of the above integral is

the one across the cut (1/r ,∞), as all others are related to it.
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Using the Lorentzian inversion

formula



Gap equations from the inversion formula: bosonic case

Inversion formulae (i.e. spectral decompositions) are most use-

ful when there is an independent evaluation of the correlation

functions.

• For bosons (scalars) the simplest ansatz is to consider the

momentum-space thermal 2-pt function

G (d)(ωn,p) =
1

ω2
n + p2 + m2

th

, ωn = 2πn , n = 0,±1,±2, . . . ,

• This is motivated by known work on thermal field theory which shows

that fields develop generically a thermal mass mth at finite

temperature.

• We are actually asking whether the simple ansatz above can define a

thermal CFT. We make no reference to a Lagrangian, although it is

known that the 2-pt function can be obtained, for example, in the

large-N limit of the O(N) model [T. P. et. al. hep-th/9803149 (PLB) ].
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thermal CFT. We make no reference to a Lagrangian, although it is

known that the 2-pt function can be obtained, for example, in the

large-N limit of the O(N) model [T. P. et. al. hep-th/9803149 (PLB) ].
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Gap equations from the inversion formula: bosonic case

• In arbitrary-d the above 2-pt function can be Fourier-transformed to

G (d)(τ, x) =
1

(2π)
d
2

∞∑
n=−∞

(
mth

|Xn|

)d
2−1

K d
2−1(mth|Xn|) , Xn = (τ − n, x)

where Kα(x) is the modified Bessel function of the second kind.

• Defining z = τ + i |x| we find |Xn| =
√

(n − z)(n − z̄).

• We focus on odd d = 2k + 1, k = 1, 2, . . . , and in that case we may

write

G (2k+1)(τ, x) =
1

2k+1πk

∞∑
n=− inf ty

mk−1
th

|Xn|k
e−mth|Xn|

k−1∑
p=0

Lk,p
(mth|Xn|)p

with

Lk,p =
(k − 1 + p)!

2pp!(k − 1− p)!
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Gap equations from the inversion formula: bosonic case

• The latter coefficients also appear in the Bessel polynomials

yn(x) =
n∑

p=0

Ln+1,p x
p =

√
2

πx
e1/xKn+ 1

2
(1/x)

• The relevant discontinuity Disc(G (d)) follows simply from

understanding the discontinuity of the function

f (k)(x) =
ak−1

(
√
x)k

e−a
√
x
k−1∑
p=0

Lk,p
(a
√
x)p

across the cut due to the square-root branch point at x = 0.

• Assuming that the cut goes from x = 0 to x =∞ we find that

Disc(f (k)(x)) =
2

xk−1

( 1√
−x

Uk(x) cos(a
√
−x) + Vk(x) sin(a

√
−x)

)
Uk(x) = 1

2

(
θk−1(

√
x) + θk−1(−

√
x)
)

Vk(x) =
1

2
√
x

(
θk−1(

√
x)− θk−1(−

√
x)
)

with θn(x) = xnyn(1/x) the so-called reverse Bessel polynomials.
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Gap equations from the inversion formula: bosonic case

• We can now calculate the spectral function a(∆, s). For the

discontinuity part we find

a
(k)
Disc,0(∆, s) = (1 + (−1)s)

1

22s+ks!

Γ(k − 1
2 )

Γ(k + s − 1
2 )

×
k−1+s∑
n=0

2n+1

n!

(2(k − 1 + s)− n)!

(k − 1 + s − n)!
mn

th Li2k−1+s−n(e−mth )

where Liα(z) =
∑∞

n=1 z
n/nα is the polylogarithm.

• The result above follows just from the leading term in a z̄-expansion

of the inversion formula. It gives the contributions of higher-spin

conserved currents with ∆ = d − 2 + s.

• Subleading terms in the z̄-expansion, denoted as a
(k)
Disc,1, a

(k)
Disc,2, . . . . ,

would give the contributions of higher-twist operators.
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Gap equations from the inversion formula: bosonic case

• The arc part a
(d)
arcs(∆, s) is nonzero only for s = 0. We find

a(d)
arcs(∆, 0) =

1

2∆− d−5
2
√
π
m∆

thΓ
(
− ∆

2

)
Γ
(
− ∆− d + 2

2

)

• Notice that for mth = 0 only the ∆ = 0 term survives giving the

contribution of the identity operator. This, along with the

corresponding mth = 0 contributions from a
(k)
Disc(∆, s), yield the

spectrum of generalized free CFTs.

• When mth 6= 0 and for ∆ > 0 the above yields contributions of an

infinite tower of scalar operators with ∆ = 2m, m = 1, 2, . . . , as well

as contributions with ∆ = d − 2 + 2l , l = 0, 1, 2, . . . .

• The former correspond to operators of the form σm, m = 1, 2, . . . ,

where σ is the shadow of φ2.
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Gap equations from the inversion formula: bosonic case

• For the latter operators we will first focus on the l = 0 case,

corresponding to the φ2 operator, which enters the spectrum both

from the discontinuity part as well as from the arc part of the spectral

function.

• If we demand the absence of this operator from the spectrum the

two above contributions must cancel each other. This gives rise to a

condition that determines mth, namely

k−1∑
n=0

2n+1

n!

(2(k − 1)− n)!

(k − 1− n)!
mn

th Li2k−1−n(e−mth ) = − 1

2
√
π
m2k−1

th Γ(−k+ 1
2 )

• This is the so-called gap equation and it is here presented for any

d = 2k + 1, k = 1, 2, . . . .
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Gap equations from the inversion formula: bosonic case

• The subleading terms in the give higher poles at

∆ = d − 2 + 2l , l = 1, 2, . . . ,. These correspond to scalar operators

of the form φ∂2lφ.

• Such operators also arise from subleading terms in the z̄ expansion of

of the discontinuity parts of the spectral function., namely from

a
(k)
Disc,1, a

(k)
Disc,2, . . . . These operators should also disappear from the

spectrum when the gap equation is satisfied.

• Although we have verified this in a couple of cases, we do not have a

general proof as yet.
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Gap equations from the inversion formula: bosonic case

• The arc contribution of the identity operator provides a quick

consistency check of our computations. Since the identity operator

has ∆ = 0 we see that the pole associated with it appears due to

Γ(−∆
2 ).

• For the residue find

Res
∆=0

(a(d)
arcs(∆, 0)) = −2

d−3
2

√
π

Γ( d
2 − 1)

• This exactly reproduces the correct normalization of the identity

operator (in our conventions).
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Gap equations from the inversion formula: fermionic case

• It is also possible to study finite-temperature fermionic 2-pt functions

using the inversion formula. The simplest case to consider is the

singlet projection of the two-point functions of Dirac fermions ψi (x),

ψ̄i (x) in odd dimensions,

〈ψi (x)ψ̄i (0)〉β ≡ g̃(r , cos θ) =
∑
Õs 6=1

ãÕs

(
r

β

)∆Õs Cνs (cos θ)

r2∆ψ

with ∆ψ = ∆φ + 1/2 and i , j = 1, 2, . . . , 2
d−1

2 spinor indices.

• This vanishes at zero temperature which is is a manifestation of the

fact that the unit operator is absent in the finite-temperature OPE.

• The corresponding unit-normalized momentum-space 2-pt function is

G̃ (d)(ωn,p) =
m̃th

ω2
n + p2 + m̃2

th

where the fermionic Matsubara frequencies are ωn = 2π(n + 1/2),

n = 0,±1,±2, . . . .
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Õs 6=1

ãÕs
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Gap equations from the inversion formula

• The fermionic propagator vanishes for m̃th = 0 so we will only

consider m̃th 6= 0 in the fermionic case from now on. The calculations

follow closely the bosonic case e.g. it is known that fermionic

Matsubara sums reduce to a linear combination of bosonic ones.

• We then notice that by virtue of the relationship ∆ψ = ∆φ + 1/2, the

fermionic formulas can all be obtained from the bosonic ones by the

simple shift ∆→ ∆− 1.

• The arc contributions in the fermionic case are thus given by

ã(d)
arcs(∆, 0) = − 1

2∆− d−3
2
√
π
m̃∆−1

th Γ
(
− ∆− 1

2

)
Γ
(
− ∆− d + 1

2

)
• This gives operators of dimension ∆ = 2m + 1 and ∆ = d − 1 + 2m,

m = 0, 1, 2, . . . .
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• This gives operators of dimension ∆ = 2m + 1 and ∆ = d − 1 + 2m,

m = 0, 1, 2, . . . .
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Gap equations from the inversion formula: fermionic case

• The former are contributions that do not arise from the discontinuity

part, having the form σ̃m with σ̃ the shadow field of ψ̄ψ. Note that,

as expected, there is no contribution from the unit operator.

• The latter provide contributions from operators of the form ψ̄∂2mψ

that coincide with those coming from the discontinuity.

• The fermionic gap equation is the condition for the cancellation of

the latter operators from the spectrum and it reads

k−1∑
n=0

2n+1

n!

(2(k − 1)− n)!

(k − 1− n)!
m̃n+1

th Li2k−1−n(−e−m̃th ) = − 1

2
√
π
m̃2k

th Γ(−k+ 1
2 )
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Gap equations from the inversion formula: lesson 3

The Lorentzian inversion formula together with an ansatz for

the form of the thermal 2-t function can be used to bootstrap

bosonic and fermionic CFTs in arbitrary odd-d dimensions.

The nontrivial dynamics corresponds to a rearrangement of the

operator spectrum. The gap equation arises as the condition

that certain classes of operators drop out from the spectrum

of the nontrivial CFT.

The resulting picture for the operator spectrum corresponds

to the well-known large-N CFTs that arise from a generalised

Hubbard-Stratonovich transformation (see later).
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Further lessons from the gap

equations



Further lessons from the gap equation: solutions

• The bosonic gap equation in d = 3 reads

−mth = 2 log(1− e−mth )

with the well-known solution (related to the ”golden mean”)

m
(d=3)
th = 2 log( 1+

√
5

2 ) ≈ 0.96242

• In d = 5 the bosonic gap equation becomes

−1
6m

3
th = Li3(e−mth ) + mth Li2(e−mth )

This has a complex conjugate pair of solutions given numerically by

m
(d=5)
th ≈ 1.17431± 1.19808i
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Further lessons from the gap equation: solutions

• In fact, we find that for d = 3, 7, 11, . . . the bosonic gap equation has

a unique real solution for mth and complex solutions that come in

conjugate pairs - except for d = 3 where there are no complex

solutions. i.e. in d = 7 we find a real and a pair of complex conjugate

solutions.

• For d = 5, 9, 13, . . . we do not find any real solutions, and the

gap equation only has pairs of complex conjugate solutions. I.e.

d = 5 we only find the solutions above, while in d = 9 we find four

complex conjugate pairs of solutions. Notice also that mth = 0 is

never a solution of the bosonic gap equations.
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Further lessons from the gap equation: solutions

• The fermionic gap equations in d = 3, 5 are given respectively by

−m̃2
th = 2m̃th log(1 + e−m̃th ) ,

− 1
6 m̃

4
th = m̃th Li3(−e−m̃th ) + m̃2

th Li2(−e−m̃th )

• For d = 3 and m̃th 6= 0 The fermionic gap equation has only a pair of

complex conjugate imaginary solutions m̃
(d=3)
th = ±2πi/3. For d = 5

it has a pair of opposite real solutions, as well as a pair of complex

conjugate imaginary ones which can be found numerically.

• This pattern continues to higher dimensions, namely for

d = 7, 11, 15, . . . there is no real solution to the corresponding

fermionic gap equation, while for d = 9, 13, 17, . . . there is

always a pair of opposite real solutions and an increasing

number of complex conjugate ones.
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Further lessons from the gap equation: the effective potential

The above pattern for the solutions of bosonic and fermionic

gap equations for all odd-d fits nicely with a renormalization-

group understanding of universality classes of scalars and

fermions in general dimensions.

• In the bosonic case the standard lore is that the large-N universality

class for scalars in d = 2k + 1, k = 1, 2, . . . , is accessible via the ε

expansion starting from d = 2k + 2.

• The Hubbard–Stratonovich transformation introduces a field σ via the

classically marginal interaction σφ2. σ has dimension ∆σ = 2 in all d ,

and the scalars φ can be integrated out resulting in an effective

potential of the general form

Veff(σ) ∼ Trd log(−∂2 + σ) + g∗σ
d
2 + · · ·

with g∗ some critical dimensionless coupling.
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Further lessons from the gap equation: the effective potential

• For general d the effective potential can also receive contributions

from terms involving derivatives of σ, but the term σ
d
2 is universal.

• Performing the Trd log calculation in d − ε one finds that for

d = 4, 8, 12, . . . there is a resulting contribution of the form σ
d
2 log σ2,

which is positive and dominates for large σ. Thus, besides various

possible local minima, the effective potential has a global minimum.

• On the other hand, for d = 6, 10, 14, . . . the term σ
d
2 leads to an

unbounded potential, and hence to the absence of a global

minimum, regardless of the sign of the Trd log contribution. This

matches exactly the pattern we see for mth: a real mth implies a

global minimum, while a complex mth signals unstable local

extrema with nonzero decay width.
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Further lessons from the gap equation: the effective potential
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Further lessons from the gap equation: the effective potential

• In the fermionic case our results are consistent with large-N

universality classes in d = 2k + 1, k = 1, 2, . . . that are accessible via

the ε expansion starting from a generalization of the

Gross–Neveu–Yukawa model to d = 2k + 2 [P. Zinn-Justin NPB B367 (1991)]

• The corresponding Hubbard–Stratonovich transformation introduces

σ̃ via the classically marginal interaction σ̃ψ̄ψ. Here σ̃ has dimension

∆σ̃ = 1 in all d , and one gets an effective potential of the form the

Trd log term enters with the opposite sign

Veff(σ̃) ∼ −Trd log(/∂ + σ̃) + g̃∗σ̃
d + · · ·

• σ̃d gives always a bounded from below contribution (recall d is even).

However, the Trd log term changes sing as d − ε: for d = 4, 8, 12, . . .

it gives a negative contribution that dominates at infinity leading to

an unstable vacuum structure, while for d = 6, 10, 14, . . . it gives a

positive contribution that guarantees the presence of a global

minimum. In either case there can be a number of unstable extrema.

This matches the obtained pattern for the m̃th.
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Further lessons from the gap equation: the effective potential
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Outlook & bonus material



OPE inversion formulas applied to CFTs in nontrivial geome-

tries reveal crucial dynamical properties of critical systems at

the level of the operator spectrum.

The consistency of the lift to the nontrivial geometry requires

that CFTs develop thermal masses that solve a gap equation.

Remarkably, these thermal masses also encode information

about the vacuum structure of CFTs even at zero temperature.

It will be interesting to apply our method to other known CFTs

in all dimensions e.g. thermal N = 4 SYM, ABJM-like models

etc.
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It will also be interesting to apply our method to holographic

CFTs. The holographic thermal 2-pt functions can be cal-

culated using black hole physics. What is the underlying

conformal dynamics? What is the difference with the usual

large-N CFTs? Can we get universal results for thermal masses

or expectation values of conserved currrents from holography?

The methods above should be adequate to understand the

spectrum and dynamics of boundary CFTs. Can we extract

useful physical data for such theories i.e. using bootstrap

methods perhaps?

42



It will also be interesting to apply our method to holographic

CFTs. The holographic thermal 2-pt functions can be cal-

culated using black hole physics. What is the underlying

conformal dynamics? What is the difference with the usual

large-N CFTs? Can we get universal results for thermal masses

or expectation values of conserved currrents from holography?

The methods above should be adequate to understand the

spectrum and dynamics of boundary CFTs. Can we extract

useful physical data for such theories i.e. using bootstrap

methods perhaps?

42



Bonus material: from [E. Filothodoros et. al. 1803.05950 (NPB)]

• Recall the bosonic gap equation in d = 5

− 1
6 m̃

3
th = m̃th Li3(e−m̃th ) + m̃2

th Li2(e−m̃th )

• Recall the definitions of the famous Bloch-Wigner-Ramakrishnan

Dm(z) functions introduced by Zagier. These are real-valued

complex analytic functions. There relevant ones here are

D1(z) = < ln(1− z)− 1

2
ln |z |

D3(z) = <Li3(z)− ln |z |<Li2(z)− 1

2
ln2 |z |< ln(1− z) +

1

12
ln3 |z |
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Bonus material: from [E. Filothodoros et. al. 1803.05950 (NPB)]

• The gap equation of U(1) charged scalars in d = 5, coupled to

Chern-Simons, and at finite temperature is [E. Filothodoros et. al. 1803.05950 (NPB)]

−N5β
3 − D3(z∗)−

1

2
ln2 |z∗|

(
D1(z∗)−

2γ

3π

)
= 0

while the corresponding one in d = 3 is

N3β + D1(z∗) = 0

where N3 , N5 , γ are dimensionful parameters related to the coupling

of the models. z∗ = e−βm∗+iβα∗ with m∗ the bosonic thermal mass

and α∗ the U(1) imaginary chemical potential.

• It is not hard to arrange the various parameters above in order to

obtain exacly the bosonic gap equation arising from the inversion

formula. This implies that there is a particular class of Chern-Simons

coupled to matter theories that are universally described by our

version of the finite temperature bootstrap. The story generalizes to

all odd-d .
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Bonus material: from [E. Filothodoros et. al. 1803.05950 (NPB)]

• Consider the conformal L-loop ladder integrals discussed e.g. in [J. M.

Drummond 2013]

I (L)(x1, x2, x3, x4) =
x

2(L−1)
23

π2L

∫
1

x2
2n1

L−1∏
i=1

(
d4xni

x2
1ni

x2
3ni

x2
nini+1

)
d4xnL

x2
1nL

x2
3nL

x2
4nL

where x2
ij = (xi − xj)

2. These are conformal functions of weight 1.

• Hence, we can write the result as

I (L)(x1, x2, x3, x4) =
1

x2
14x

2
23

Φ(L)(v ,
v

u
)

where the usual conformal ratios are given by

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

12x
2
34

x2
14x

2
23

.
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• Consider the conformal L-loop ladder integrals discussed e.g. in [J. M.

Drummond 2013]

I (L)(x1, x2, x3, x4) =
x

2(L−1)
23

π2L

∫
1

x2
2n1

L−1∏
i=1

(
d4xni

x2
1ni

x2
3ni

x2
nini+1

)
d4xnL

x2
1nL

x2
3nL

x2
4nL

where x2
ij = (xi − xj)

2. These are conformal functions of weight 1.

• Hence, we can write the result as
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• Next, due to conformal invariance we can set x3 →∞, x1 → 0 and

x4 → 1 to obtain

I (L)(x1, x2, x3, x4)→ I (L)(0, x2,∞, 1) = Φ(L)(x2
2 = r2, x2

24 = 1+r2−2r cos θ)

where θ is the angle between xµ2 and the unit vector. As expected the

result depends on two real variables which we have taken to be

|x2| = r and θ.

• The remarkable result of [Ussyukina and Davydychev 1992-93] which was very nicely

elucidated in [Broadhurst:1993ib] is

Φ(L)(r , cos θ) =
i

z − z̄

L∑
k=0

(−1)k2k+1(2L− k)!

k!L!(L− k)!
lnk |z |= [Li2L−k(z)]

where z = re iθ , barz = re−iθ.
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Bonus material: from [E. Filothodoros et. al. 1803.05950 (NPB)]

• Suppose that we calculate the spectral function of a bosonic

propagator in d-dimensions in the presence of a an imaginary

chemical potential

G (d)(ωn, ~p;mth, α) =
1

(ωn − α)2 + ~p2 + m2
th

, ωn = 2πn , n = 0,±1,±2, ..

• It is not hard to calculate the Fourier transform of the above as

G (d)(τ, ~x ;mth, α) =
n=∞∑
n=−∞

∫
dd−1~p

(2π)d−1
e−i(ωn−α)τ−i~p·~x 1

(ωn − α)2 + ~p2 + m2
th

=
1

(2π)
d
2

∞∑
n=−∞

e iαn
(
mth

|Xn|

)ν
Kν(mth|Xn|)

where ν = d
2 − 1 and Xn = (τ − n, ~x) such that

|Xn|2 = (n− z)(n− z̄) with z = τ + i~x and z̄ = τ − i~x . Kν(z) is the

Bessel function of the second kind.
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Bonus material: from [E. Filothodoros et. al. 1803.05950 (NPB)]

• Remarkably, the (derivatives of) the spectral function of the above

thermal 2pt function gives exactly the 4pt function results!

• AGT-like relation?
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