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PerÐlhyh

Se dÔo polÔ svhmantikèc dhmosvieÔsveic o Hawking kat�fere na apodeÐxei oti oi maÔrec trÔpec ekpèm-

poun aktinobolÐa, h opoÐa pia onom�zetai “AktinobolÐa Hawking” , kai ìti h exaÔlwsvh miac maÔrhc

trÔpac odhgeÐ sve mh anasvtrèyimh ap¸leia PlhroforÐac. To prìblhma èmeine apì tìte wc to “Par�-
doxo thc PlhroforÐac” kai ed¸ kai 35 qrìnia kamÐa pl rwc ikanopoihtik  lÔsvh den èqei protajeÐ.
Skopìc aut c thc ptuqiak c ergasvÐac eÐnai na parajèsvei mia perigraf  thc diadikasvÐac me thn opoÐa

q�netai h plhroforÐa kat� thn exaölwsvh miac maÔrhc trÔpac. Gia to svkopì autì, ja k�noume arqik�

mia eisvagwg  svta aparaÐthta majhmatik� ergaleÐa thc Kbantik c JewrÐac PedÐou. 'Epeita, efarmì-
zontac ìsva m�jame sve kampulwmènouc qwroqrìnouc, ja svun�goume th jermokrasvÐa Hawking gia mia

maÔrh trÔpa. Shmantikèc ènnoiec apì th jewrÐa Kbantik c PlhroforÐac ja parousviasvtoÔn sve autì

to svhmeÐo. Tèloc, qrhsvimopoi¸ntac thn “eikonik  prosvèggisvh” gia th dhmiourgÐa svwmatidÐwn kont�

svton orÐzonta gegonìtwn, ja deÐxoume ìti h telik  kbantik  kat�svtasvh tou svusvt matoc eÐnai mixed,
apodeiknÔontac ètsvi ìti h PlhroforÐa q�netai. Sumperasvmatik�, svhmantikèc idèec pou genn jhkan

mèsva apì thn prosvp�jeia epÐlusvhc tou paradìxou, ìpwc h arq  thc Black Hole Complementarity,
ja anaferjoÔn.
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ABSTRACT

In two very important papers, Hawking was able to show that Black Holes emit radiation now
referred as “Hawking Radiation”, and that the evaporation of a Black Hole leads to irreversible
Information Loss. The problem was named as the “Information Paradox” and for over 35 years
no satisfactory solution has been suggested. The goal of this thesis is to provide a description of
the Information Loss process in Black Hole Evaporation. For this purpose, we will first introduce
the necessary mathematical background from Quantum Field Theory. Then, by applying the rules
of Quantum Field Theory in curved spacetime ,we will derive the Hawking Temperature for a
Black Hole. Important notions and ideas from Quantum Information will also be presented at this
stage. Finally, using an “eikonical approximation” of how particles are created near the Black Hole
Horizon, we will show that the final state of the system is mixed , hence proving Information Loss.
As a conclusion , important ideas that came forth in order to to make sense of the situation, like
Black Hole Complementarity, will also be mentioned.
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Chapter 1

Quantum Field Theory for
Spinless Particles

In this chapter we will present a brief introduction of Quantum Field Theory on Minkowski space-
time. Note however that we will only refer to spinless particles, which means we will not examine
the case of quantizing the Dirac Field, but only the Klein - Gordon Field. Although the following
presentation will not be by any means complete, it will be extremely useful as a guide to the more
complex Quantum Field Theory for curved space-time , which is the essential tool we need to derive
the Hawking Radiation.

1.1 Scalar Field

Let us consider a relativistic scalar field defined at all points (t,−→x ) = (t, x, y, z) =
(
x0, x1, x2, x3) of

a 4thdimensional Minkowski space-time. Let us suppose that the field Φ satisfies the Klein - Gordon
field equation :

(
�+m2)Φ = 0 where � ≡ ηµν ∂

∂xµ
∂
∂xν = ηµν∂µ∂ν and ηµν is the Minkowskian

metric tensor 1 . The Lagrangian density that gives us the Klein- Gordon equation could be the
following :

L =1
2

(
ηab

∂Φ
∂xa

∂Φ
∂xb
−m2Φ2

)

1ηµν =

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


5
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The action is :

S =
�
Ld4x

So, from the principle of least action we have δS = 0 which gives us the usual Euler- Lagrange
equations:

∂L
∂Φ = ∂

∂xa
∂L

∂
(
∂Φ
∂xa

) =⇒

∂L
∂Φ = ∂

∂xa
∂L
∂Φ;a

=⇒

−m2Φ = ∂

∂t

∂L
∂
(
∂Φ
∂t

) + ∂

∂x

∂L
∂
(
∂Φ
∂x

) + ∂

∂y

∂L

∂
(
∂Φ
∂y

) + ∂

∂z

∂L
∂
(
∂Φ
∂z

) =⇒

−m2Φ = ∂2Φ
∂t2
− ∂2Φ
∂x2 −

∂2Φ
∂y2 −

∂2Φ
∂z2 =⇒

(
�+m2)Φ = 0

The general real solution to the above equation is of the form :

Φ(−→x ,t) =
∑
k

Akfk(−→x ,t) +A?kf
?
k(−→x ,t)

where fk(−→x ,t) ∝ e
ı
(−→
k −→x−ωt

)
and ω =

√(−→
k 2 +m2

)
Now, it is useful to normalize the solution to a box of length L. After normalization the general

form will be:

Φ(−→x ,t) =
∑
−→
k

a−→
k

e
ı
(−→
k −→x−ωt

)
√
L3
√

2ω (2π)3
+ a?−→

k

e
−ı
(−→
k −→x−ωt

)
√
L3
√

2ω (2π)3
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1.2 Quantization of the Scalar field

The mathematical recipe for quantizing a field Φ = Φ(−→x ,t) is to treat the field Φ as an operator
which obeys the following equal time commutation relations:2

[
Φ(−→x ,t),Φ(−→y ,t)

]
= 0

[
Π(−→x ,t),Π(−→y ,t)

]
= 0

[
Φ(−→x ,t),Π(−→y ,t)

]
= ıδ3

(−→x−−→y )

Where Π(−→x ,t) is the canonically conjugate momentum of the field , defined as:

Π(−→x ,t) = ∂L
∂Φ;t

Note, that the previous commutation relations are in close analogy to the commutation relations of
the operators x̂ ,p̂ in classical quantummechanics. Since our Lagrangian3 is L = 1

2
(
ηab ∂Φ

∂xa
∂Φ
∂xb
−m2Φ2)

then we get that :

Π(−→x ,t) = ∂Φ
∂t

The solution of the Klein- Gordon equation that we wrote previously can also be used here:

Φ(−→x ,t) =
∑
−→
k

a−→
k

e
ı
(−→
k −→x−ωt

)
√
L3
√

2ω (2π)3
+ a†−→

k

e
−ı
(−→
k −→x−ωt

)
√
L3
√

2ω (2π)3

where a−→
k
, a†−→

k
instead of being complex numbers ,will now be operators. So Φ(−→x ,t) is now an

operator instead of a function as we have already said. The operators a−→
k
, a†−→

k
will satisfy the

following commutation relations (analogous to the commutation relations of Φ and Π).

[
a−→

k
,a−→

k ′

]
= 0

[
a†−→

k
,a†−→

k ′

]
= 0

2We assume at this point that the process of quantization is familiar to the reader so that only a brief summary
will be presented

3Every time we say Lagrangian we will mean Lagrangian density from now on
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[
a−→

k
,a†−→

k ′

]
= δ−→

k
−→
k ′

The operators a−→
k
, a†−→

k
are the usual annihilation and creation operators correspondingly.

1.3 Heisenberg Picture and Fock states

It is very convenient to use the Heisenberg picture in our treatment, where every quantum state
spans a Hilbert space and remains time- independent4. A natural basis in this Hilbert space is
the Fock representation. In the Fock representation every normalized basis ket vector can be
constructed from the |0〉 ket or the “ vacuum ” ket which is defined as :

a−→
k
|0〉 = 0, for all

−→
k

The above equation defines the “vacuum state” which is the state where all the annihilation oper-
ators that operate on the Hilbert vector state give zero. Now as we have mentioned a†−→

k
is called

the creation operator. This means that if we operate on a†−→
k

on the vacuum state |0〉 we get a one

particle state with momentum
−→
k , symbolized as

∣∣1−→
k

〉
:

∣∣1−→
k

〉
= a†−→

k
|0〉

More generally a many particle state is symbolized as
∣∣∣∣n1−→
k1
, n2−→
k2
, · · · , nj−→

kj

〉
. In this state we have

n1 particles with
−→
k1 momentum, n2 particles with

−→
k2 momentum, etc.. It can be shown that the

annihilation and creation operations satisfy the following equations:

a†−→
k

∣∣n−→
k

〉
=
√
n+ 1

∣∣(n+ 1)−→
k

〉
a−→

k

∣∣n−→
k

〉
=
√
n
∣∣(n− 1)−→

k

〉
One can easily verify that the operator N = a†−→

k
a−→

k
has eigenvalues the number of quanta with

momentum
−→
k :

N
∣∣n−→

k

〉
= a†−→

k

(
a−→

k

∣∣n−→
k

〉)
= a†−→

k

√
n
∣∣(n− 1)−→

k

〉
= n

∣∣n−→
k

〉

4The time dependency in the Heisenberg picture is carried over to the operators
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1.4 Hamiltonian and Momentum Operator

In order to find the Hamiltonian and momentum operators one can use the stress- energy momentum
tensor of the field defined as:

Tab = Φ;aΦ;b −
1
2ηabη

cdΦ;cΦ;d + 1
2m

2Φ2ηab

So from the above definition one obtains the Hamiltonian density :

Ttt = 1
2

[
(∂tΦ)2 + (∂xΦ)2 + (∂yΦ)2 + (∂zΦ)2 +m2Φ2

]
and momentum density :

Tti = ∂tΦ∂iΦ i = x, y, z

The Hamiltonian5 is equal to :

H =
�
Tttd

3x = 1
2
∑
−→
k

(
a†−→

k
a−→

k
+ a−→

k
a†−→

k

)
ω =

∑
−→
k

(
a†−→

k
a−→

k
+ 1

2

)
ω

Similarly the momentum is equal to:

Pi =
�
Ttid

3x =
∑

a†−→
k

a−→
k

−→
k

1.5 Energy and Momentum of the Vacuum State

Since we have shown the momentum and energy operators, let us compute the momentum and
energy of the vacuum state. For the momentum the answer is trivial since:

〈0|P |0〉 = 〈0|
∑
−→
k

a†−→
k

a−→
k

−→
k |0〉 = 0

So we see that the vacuum state carries zero momentum as expected. However if we try to compute
the energy of the vacuum state we get6 :

〈0|H |0〉 = 〈0| 0〉
∑
−→
k

1
2ω =

∑
−→
k

1
2ω

5We use the commutation relations for a
†
−→
k

′ , a−→
k

6We use the orthonormality relation 〈0| 0〉 = 1
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In the above summation there is no upper bound in the magnitude of
−→
k , so the energy comes

out infinite. In flat space-time physics , this infinity of the energy density poses no serious threat
because we only measure differences of energies and not total energies. Therefore , we can make the
energy density of the vacuum zero by throwing away the

∑
−→
k

1
2ω that appears in the Hamiltonian

which is the source of the infinity. It is important to note however that when we include gravity
in the picture things become more complicate. The energy momentum tensor in Einsteins Field
Equations “sees” all energies and not only differences of energies. The vacuum energy divergence
is therefore not so easily ignored when we consider curved space-time geometries.



Chapter 2

Hawking Radiation

In this chapter we will examine the notion of “particle” as it appears in Quantum Field Theory. We
will then examine the classical notion of the particle notion and the very interesting Unruh effect.
Finally, we will derive the very important result Hawking discovered, namely Hawking Radiation .

2.1 The classical notion of Particle and the Unruh Effect

Hawking Radiation is based on the observation that the vacuum state for one observer appears as a
non vacuum state for another observer. The notion of particle becomes relative in the sense that it
is observer -dependent. This is also true in Flat space-time. Although inertial observers will agree
on the same vacuum state, non-inertial or accelerated observers will generally see the same state
as filled with particles. This is the famous Unruh Effect , which we will examine more thoroughly
shortly.

Since both the Hawking and the Unruh effects are quantum mechanical one would expect that
the notion of particle becomes observer -dependent only when we take into account Quantum Field
Theory. On the other hand it is interesting to notice that the notion of particle becomes blurred
even when we try to combine classical electromagnetic theory with the Equivalence Principle. How
exactly does this happen will become clear with the following thought experiment:

Imagine an non- inertial accelerated observer with constant proper acceleration. Now suppose
that the observer has a charged sphere and an electromagnetic radiation detector that accelerates
with him. Using Maxwell equations one would expect that the charged sphere should radiate
electromagnetic radiation (since it is accelerating) so the accelerated detector should pick up an
energy flux. So far so good. Let us now examine the point of view of the accelerated observer using
the equivalence principle. From his point of view he cannot decide whether he is accelerating or is in

11
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a uniform gravitation field e.g the earths gravitation field for small space-time volume. He is feeling
the weight of the charged sphere and the detector due to the gravitation field. But as we have
already found out with another argument the detector should detect an energy flux which means
that stationary charges inside a gravitational field must radiate. This is a rather uncomfortable
result since there is not at all clear how a stationary state like that could produce a constant energy
flux , which in turn would mean a flux o photons passing through the detector.

To sum up, if we assume the following two propositions :

1. Equivalence Principle and Maxwell equations of Electromagnetism.

2. The number of particles that a detector detects is independent of the motion of the detector.

we deduce a rather absurd result. Obviously we have to abandon at least one of our assumptions
and the best candidate is the assumption that the number of particles a detector detects does not
depend on its motion.1 We have therefore seen that even in classical physics there were clear hints
that the number of particles a detector sees is not invariant ,but depends on its motion.

2.2 Unruh effect

We come back now to the realm of quantum field theory in which the notion of particle becomes
clearly observer dependent. First we will show that an accelerated observer will see a bath of
radiation whereas all inertial observers will see the same state as the vacuum state or no particle
state. This the famous Unruh effect [1]. Let us first consider for simplicity a two dimensional flat
space-time with the metric2:

ds2 = dt2 − dx2 (2.2.1)

We will define the coordinates u, v by :

u = t− x

v = t+ x

The line element then becomes :

1A detailed explanation of the charge in a gravitation field problem can be found here
http://link.springer.com/article/10.1023%2FA%3A1018821619763

2c=1
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ds2 = dt2 − dx2 = dudv (2.2.2)

Now , consider the following coordinate transformation :

t = a−1eaξsinh (aη) (2.2.3)

x = a−1eaξcosh (aη) (2.2.4)

with a = constant > 0 , −∞ < (η, ξ) <∞.

Lets calculate u, v as functions of η, ξ :

u = t−x = a−1eaξ [sinh (aη)− cosh (aη)] = a−1eaξ
[
eaη − e−aη

2 − eaη + e−aη

2

]
= a−1eaξ

(
−e−aη

)
= −a−1e−a(η−ξ)

v = t+ x = a−1eaξ [sinh (aη) + cosh (aη)] = a−1eaξ
[
eaη − e−aη

2 + eaη + e−aη

2

]
= a−1ea(η+ξ)

Defining :

u = η − ξ

v = η + ξ

We get :

u = −a−1e−au

v = a−1eav

So the line element (2.2.2) becomes :

ds2 = dudv = −a−1 (−a) e−audu
(
a−1a

)
eavdv ⇒

ds2 = ea(v−u)dudv = e2aξdudv = e2aξ (dη2 − dξ2)
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If we examine the transformation relations (2.2.3), (2.3.4) we can see that the coordinates
(η, ξ) cover only the portion x > |t| of the Minkowski space-time, called the Rindler wedge. We
can also notice that lines of constant η are straight lines since :

t

x
= a−1eaξsinh (aη)
a−1eaξcosh (aη) = constant ⇒

t ∝ x

On the other hand lines of constant ξ are hyperbola3 :

x2 − t2 = a−2e2aξcosh2 (aη)− a−2e2aξsinh2 (aη) =

= a−2e2aξ (cosh2 (aη)− sinh2 (aη)
)

= a−2e2aξ = constant

Lines of constant ξ represent the world lines of uniformly accelerated observers with proper accel-
eration $ :

$ =
(
a−2e2aξ)− 1

2 = ae−aξ

All the hyperbola approach the null rays u = 0, v = 0 asymptotically , which means that the
accelerated observers approach the speed of light as η → ±∞. The coordinate η is like the time
coordinate for every accelerated observer with the exact relation (since dξ = 0) :

dτ2 = e2aξdη2 ⇒

dτ = eaξdη ⇒

τ = eaξη

3We will use the known equation : cosh2 (x)− sinh2 (x) = 1
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In the following figure we depict lines of constant η and ξ :

Figure 2.2.1: Rindler’s Wedge in Minkowski Spacetime

It is important and quite interesting to understand the causal structure of the Rindler space-
time. First, we can construct a second wedge x < − |t| by changing the sign in the transformation
relations (2.2.3), (2.2.4) . The x > |t| is called the R region, and the x < − |t| region, the L region.
The remaining future and past regions of space-time are called F, and P correspondingly. Since
every event in the L region can be connected with events in R region only through a space-like slice,
these two regions are like two disjoint universes. Also events in F can’t influence events in R, L so
that the null rays t = x, t = −x act as event horizons.

2.2.1 Field Quantization

Now let us consider the usual quantization of a massless scalar field Φ in two- dimensional Minkowski
space time. The wave equation is :

�Φ ≡
(
∂2

∂t2
− ∂2

∂x2

)
Φ = ∂2Φ

∂u∂v
= 0 (2.2.5)

The above equation possesses the standard orthonormal mode solutions :
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uk = (4πω)−
1
2 eıkξ−iη

with ω = |k| > 0 and −∞ < k <∞.

The field Φ can be expanded as :

Φ =
∑

k=−∞,∞

(
akuk + a†kuk

?
)

where ak is the usual annihilation operator and a†k the creation operator. Let us now solve the
wave equation (2.2.5) in Rindler coordinates (η, ξ) :

�Φ ≡ e−2aξ
(
∂2

∂η2 −
∂2

∂ξ2

)
Φ = e−2aξ ∂

2Φ
∂u∂v

= 0

This equation has the same form as before and has solutions :

uk = (4πω)−
1
2 eıkξ±iη, ω = |k| > 0, −∞ < k <∞

The plus sign applies in region L and the minus in region R. The change of sign is due to the fact
that we have different transformation relations for the two wedges R, L .

Let us now define the functions :

Ruk =
{

(4πω)−
1
2 eıkξ−iη in R

0 in L

Luk =
{

(4πω)−
1
2 eıkξ+iη in L

0 in R

Although each set is complete for either region R or L neither one is complete in all Minkowski
space-time. However, both sets can be analytically continued into regions F an P and can be as a
good basis as any other complete basis. We can thus write the field Φ in the new basis :

Φ =
∑

k=−∞,∞

(
b

(1)
k Luk + b

†(1)
k Lu?

k
+ b

(2)
k Ruk + b

†(2)
k Ru?

k

)
In this basis we can define the vacuum state or Rindler vacuum as :

b
(1)
k |0R〉 = b

(2)
k |0R〉 = 0
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The question that remains at this point is whether the vacuum state as defined for inertial observers,
remains the vacuum state for Rindler observers. One can simply argue that since Rukdo not go
smoothly to Luk from the R region to the L region, and since the Minkowski modes are analytical
everywhere, then both operators b

(1)
k , b

(2)
k are linear combinations of the annihilation and creation

operators ak, a†k. This means that the vacuum state for an inertial observer is not the vacuum
state for the Rindler observer :

b
(1,2)
k |0〉 6= 0

Now consider an observer with world line ξ = constant . If such an observer is on the x > |t| part
of space-time, then he is a Rindler observer and will detect particles determined by the number
operator b

†(1)
k b

(1)
k .4

If the state is |0〉 which is the vacuum state for inertial observers then the Rindler observer will
detect :

〈0| b†(1)
k b

(1)
k |0〉 =

(
e

2πω
a − 1

)−1

particles in mode k.5 This is precisely the Planck spectrum for radiation at temperature :

T0 = a

2πkB

So we have found out that Rindler observers will detect a thermal bath of particles in flat space-
time. By the same logic one could see an analogous phenomenon, that inertial observers will detect
particles in curved space-time.6 This is the famous Hawking radiation which we will explain shortly
after.

2.3 Hawking Radiation

In this section we will derive Hawking radiation following Hawking’s original derivation [2]. As
Hawking explained in his 1975 paper, we still don’t have a complete theory of quantum gravity ,
so one has the problem of combining the metric which obeys Einstein’s Equations and the matter
fields which are treated quantum- mechanically. Such a treatment is obviously incomplete but
should be a very good approximation for all purposes except near space-time singularities where

4The number operator for the L region is b
†(2)
k b

(2)
k5For full derivation see Page 115 of [N._D._Birrell,_P._C._W._Davies]_Quantum_Fields_in_Curved_Spacetime

6This is not so obvious but will be shown when we will derive Hawking radiation
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the curvature becomes very big. The procedure we will follow in order to derive Hawking radiation
is the following:

First, the scalar field Φ will obey the same equation of motion as in flat space-time, except
that the Minkowski metric will be replaced by a classical space-time metric gab obeying Einstein’s
Equations. As we have already shown in flat space-time, there is a standard procedure of defining
the vacuum state for all inertial observers. The massless Hermitian scalar field obeys the equation:

Φ;abη
ab = 0

and one expresses Φ as:

Φ =
∑
i

(
aifi + a†ifi

)
the {fi} form a complete basis and contain only positive frequencies with respect to the usual
Minkowski time coordinate. This guarantees that the vacuum state defined by :

ai |0〉 = 0, for all i

is the same for all inertial observers. On the other hand we have also seen that Rindler observers
will not agree on the same vacuum (Unruh effect). Following the same recipe in curved space-time,
the Hermitian scalar field operator Φ obeys the wave equation :

Φ;abg
ab = 0

However one can not decompose Φ into it’s positive and negative frequency parts as positive
and negative frequencies have no invariant meaning in curved space-time. Therefore if one tries to
decompose Φ into it’s positive an negative frequencies in one region of space-time it will in general
not be true for another region of space-time. Let us suppose on the other hand that we have a
time dependent metric which at some region is flat or asymptotically flat. Then the natural choice
of {fi} is that they should contain only positive frequencies with respect to the Minkowski time
coordinate. This gives us a definition of the vacuum state. If at later times the flat region is followed
by a curved region and then a final flat region , the basis which contains only positive frequencies
in the initial flat region will not be the same as the basis which contains only positive frequencies in
the final flat region. This means that if we start with a vacuum state , it will not remain a vacuum
at later times. This is the line of thinking Hawking followed in his original paper in order to show
that a time dependent gravitational field will create particles.
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2.3.1 Carter- Penrose Diagrams

Before moving on to the derivation of Hawking radiation we will introduce a new way of represent-
ing space-time which will be extremely useful for our derivation. The idea is to do a conformal
transformation of coordinates which brings the entire manifold into a compact region so that we
can fit the whole space-time on a piece of paper. The result of this procedure is the Penrose- Carter
Diagram.

2.3.1.1 Minkowski Space-time

Let us first begin with Minkowski space and after that to the Schwarzschild metric. The Minkowski
metric7 in polar coordinates is :

ds2 = −dt2 + dr2 + r2dΩ2

The range of t, r coordinates is :

−∞ < t <∞, 0 ≤ r <∞

The first step is to switch to null coordinates :

u = 1
2 (t+ r)

v = 1
2 (t− r)

with corresponding ranges : −∞ < u <∞ , −∞ < v <∞ , v ≤ u

Each point in the following picture represents a 2- sphere of radius r = u− v :

7We use the (−,+ + +)metric which is convention in General Relativity
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Figure 2.3.1: Null coordinates in Flat Spacetime

The metric in the null coordinates is :

ds2 = −4dudv + (u− v)2
dΩ2

Now, in order to compact an infinite area to a finite region we make the following transformation:

U = arctan (u)

V = arctan (v)

The ranges are now :
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−π2 < U <
π

2

−π2 < V <
π

2

V ≤ U

It is fairly easy to get the metric in the U, V coordinates :

u = tanU ⇒ du = 1
cos2U

dU

v = tanV ⇒ dv = 1
cos2V

dV

(u− v)2 = (tanU − tanV )2 = (sinU cosV − cosU cosV )2

cos2U cos2V

So the metric becomes :

ds2 = 1
cos2U cos2V

(−4dUdV ) + sin2 (U − V ) dΩ2

The final transformation is :

η = U + V

χ = U − V

with ranges :

−π < η < π , 0 ≤ χ < π

Now the metric becomes :

•

cosη+cosχ = cos (U + V )+cos (U − V ) = cosUcosV−sinUsinV+cosUcosV−sinUsinV = 2cosUcosV ⇒

⇒ 1
cos2U cos2V

= 1(
cosη+cosχ

2
)2
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•
−4dUdV = −

(
dη2 − dχ2) = dη2 − dχ2

•
sin2 (U − V ) = sin2χ

ds2 = 1(
cosη+cosχ

2
)2 (−dη2 + dχ2 + sin2χdΩ2)

Using the transformation relations we can plot a space-time diagram where η is in the vertical axis
and χ the horizontal axis.

Figure 2.3.2: Penrose Diagram for Minkowski Spacetime

ı+= future timelike infinity

ı0= spatial infinity

ı−= past timelike infinity
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=+= future null infinity

=−= past null infinity

The whole Minkowski space-time is depicted to a finite triangle region as shown above. Spacelike
curves with t = constant and timelike curves with r = constant are also depicted on the diagram.
The reason why these curves are the way they are , can be calculated using the transformation
relations :

Spacelike t = constant curves

u+ v = t ⇒ tanU + tanV = t ⇒

tan

(
η + χ

2

)
+ tan

(
η − χ

2

)
= t ⇒

sin
(
η+χ

2
)

cos
(
η+χ

2
) +

sin
(
η−χ

2
)

cos
(
η−χ

2
) = t ⇒

sin
(
η+χ

2
)
cos
(
η−χ

2
)

+ sin
(
η−χ

2
)
cos
(
η+χ

2
)

cos
(
η+χ

2
)
cos
(
η−χ

2
) = t ⇒

sin
(
η+χ

2 + η−χ
2
)

cos
(
η+χ

2
)
cos
(
η−χ

2
) = t ⇒

sin (η)(
cosη+cosχ

2
) = t ⇒

8

2sinη = t (cosη + cosχ)

This is the equation of the t = constant curve. As we can see for η = 0 we get χ = π which can be
verified on the graph.

Timelike r = constant curves

The derivation is quite similar :

u− v = r ⇒ tanU − tanV = r ⇒

8We use the identity : cosθcosϕ = cos(θ−ϕ)+cos(θ+ϕ)
2
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tan

(
η + χ

2

)
− tan

(
η − χ

2

)
= r ⇒

sin
(
η+χ

2
)

cos
(
η+χ

2
) − sin

(
η−χ

2
)

cos
(
η−χ

2
) = r ⇒

sin
(
η+χ

2
)
cos
(
η−χ

2
)
− sin

(
η−χ

2
)
cos
(
η+χ

2
)

cos
(
η+χ

2
)
cos
(
η−χ

2
) = r ⇒

sin
(
η+χ

2 − η−χ
2
)

cos
(
η+χ

2
)
cos
(
η−χ

2
) = r ⇒

sin (χ)(
cosη+cosχ

2
) = r ⇒

rcosη = 2sinχ− rcosχ

There are several important features one should point out in the Penrose diagram for Minkowski
space-time. First, radial null geodesics are lines at ±450 in the diagram. This is extremely useful
because we can see the causal relation of every point in space-time easily. All timelike geodesics
begin at ı− and end at ı+. All null geodesics begin at =− and end at =+. Finally, ı0 is the
asymptotic point of all spacelike geodesics.

2.3.1.2 Schwarzschild Spacetime

Constructing the Penrose diagram for the Schwarzschild metric is very similar to the Minkowski
space-time, transforming the Schwarzschild coordinates to some new ones. The Schwarzschild
metric is9:

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2

The first coordinate transformation we will use is :
For r > 2M

U =
( r

2M − 1
) 1

2
e
r

4M cosh

(
t

4M

)

V =
( r

2M − 1
) 1

2
e
r

4M sinh

(
t

4M

)
9(c = G = ~ = 1)
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For r ≤ 2M

U =
(

1− r

2M

) 1
2
e
r

4M sinh

(
t

4M

)

V =
(

1− r

2M

) 1
2
e
r

4M cosh

(
t

4M

)
From the above equations we can verify that :

( r

2M − 1
)
e
r

2M = U2 − V 2 (2.3.1)

tan

(
t

4M

)
= V

U
, r > 2M (2.3.2)

tan

(
t

4M

)
= U

V
, r ≤ 2M (2.3.3)

The metric in the new coordinates (U, V ) id not very hard to find but requires a certain amount
of computation :

ds2 = gUUdU
2 + gV V dV

2 + r2dΩ2

gabis a second rank tensor and transforms as :

g
′

ab = ∂xc

∂x′a
∂xd

∂x′b
gcd ⇒

gUU =
(
∂t

∂U

)2
gtt +

(
∂r

∂U

)2
grr

Using equation (2.3.1) we have :(
1

2M e
r

2M + 1
2M

( r

2M − 1
)
e
r

2M

)(
∂r

∂U

)
= 2U ⇒

1
2M e

r
2M

r

2M

(
∂r

∂U

)
= 2U ⇒

re
r

2M

4M2

(
∂r

∂U

)
= 2U ⇒

∂r

∂U
= 8M2U

re
r

2M
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Using equation (2.3.2) 10 we have :

1
cosh2

(
t

4M
) 1

4M

(
∂t

∂U

)
= − V

U2 ⇒

∂t

∂U
= −4MV

U2 cosh2
(

t

4M

)
gUU is then equal to :

gUU =
(
∂t

∂U

)2
gtt +

(
∂r

∂U

)2
grr ⇒

gUU = 16M2V 2

U4 cosh4
(

t

4M

)[
−
(

1− 2M
r

)]
+ 64M4U2

r2e
r
M

(
1− 2M

r

)−1
⇒

gUU = 16M2V 2

U4

(
1

1− tanh2
(
t

4M
))2 [

−
(

1− 2M
r

)]
+ 64M4U2

re
r
M (r − 2M)

⇒

gUU = 16M2V 2

U4

(
1

1− V 2

U2

)2 [
−
(

1− 2M
r

)]
+ 64M4U2

re
r
M (r − 2M)

⇒

gUU = − 16M2V 2

r (U2 − V 2) (r − 2M) + 64M4

re
r
M (r − 2M)

U2 ⇒

gUU = − 16M2V 24M2

r (r − 2M) e r
M

+ 64M4

re
r
M (r − 2M)

U2 = 64M4

re
r
M (r − 2M)

(
U2 − V 2) ⇒

gUU = 64M4

re
r
M (r − 2M)

( r

2M − 1
)
e
r

2M = 32M3

re
r

2M
⇒

gUU = 32M3

r
e−

r
2M

The same calculation can be done for gV V :

gV V = −32M3

r
e−

r
2M

Finally the metric is :

ds2 = 32M3

r
e−

r
2M
(
−dV 2 + dU2)+ r2dΩ2

10We use only the r > 2M case here but the result is valid for all r
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The (U, V ) coordinates are called Kruskal- Szekeres coordinates. The second transformation is:

u = U + V

v = V − U

In the (u, v) coordinates light rays move at constant u or v. The final transformations relation that
will bring the whole space-time to a finite diagram are :

u
′
≡ arctan (u) ≡ V

′
− U

′

v
′
≡ arctan (v) ≡ V

′
+ U

′

The diagram of the Schwarzschild solution in
(
V
′
, U
′
)
coordinates is the Penrose Diagram and

is shown in the next page.
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Figure 2.3.3: Penrose Diagram for a Schwarzschild Spacetime

In the above Penrose Diagram for the Schwarzschild space-time the r = 0 singularity is depicted
as a straight horizontal line with V ′ = π

4 and −π4 ≤ U
′ ≤ π

4 . The horizon r = 2M of the Black
Hole is the V

′ = U
′ line at 450 angle.

2.3.2 Collapsing Shell of Mass

Having described the Penrose Diagram for both Minkowski and Schwarzschild space time we can
now move on to derive Hawking Radiation. For simplicity we will imagine a spherical thin shell of
Mass, collapsing to form a black hole. In order to understand how a black hole can radiate particles
we must consider the time- dependent phase of the collapsing shell and not just the stationary state
after the black hole has formed. There is a really important theorem in General Relativity called
the no-hair theorem which states that every asymmetric state of collapse will settle down fairly
quickly to a stationary solution. For example, if the initial collapsing mass was not spherically
symmetric but had a “bulge” then it would radiate away its asymmetry through gravity waves and
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would settle down to the stationary Schwarzschild or Newmann- Kerr solution. In our treatment (as
in Hawking’s 1975 paper) we will consider a non- rotating and uncharged shell of mass collapsing
to form the black hole. The stationary solution for such case is the Schwarzschild metric.

Isaac Newton had the intuition and later managed to prove that the field outside a spherically
symmetric mass is the same as if the whole mass was at the center of the sphere. A similar theorem
exists in General relativity. In the case of the thin collapsing shell of mass, the theorem states that
the space-time metric outside the shell is described by the Schwarzschild metric and inside the shell
the metric is that of flat space-time11. This is the reason why we previously needed to analyze the
Penrose diagrams for both Minkowski and Schwarzschild space-time. As we see both are needed
for the collapsing shell of mass.

The Penrose diagram for the collapsing shell is presented in the figure (2.3.4) :

Figure 2.3.4: Penrose Diagram for the collapsing Shell

The timelike geodesic of the thin shell is described by the R(t) curve in the above diagram.
The portion of the diagram outside the curve is described by the Schwarzschild metric and inside
by the Minkowski metric as we have mentioned.

11In fact we could take a more realistic case of a normal collapsing star so the metric would not be flat inside.
Whatever the inside metric is, it doesn’t matter in the derivation.
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2.3.3 Quantum Field Theory in the Collapsing Shell Spacetime

In this space-time we consider for simplicity a massless Hermitian field operator Φ , obeying the
wave equation :

gab∇aΦ∇bΦ = 0

The operator Φ can be expressed in the basis :

Φ =
∑
i

{
fiai + f?i a†i

}
The solutions {fi} can be chosen so that on the past null infinity L− they form a complete basis
which satisfy the following orthonormality conditions :

(fi, fj) = δij ,
(
fi, f

?
j

)
= 0 (2.3.4)

with the (f, h) operation defined as :

(f, h) = ı

�
d3Σ (f (∂th?)− (∂tf)h?) (2.3.5)

where the integral at (2.3.5) is taken over a Cauchy surface.
The natural interpretation of the operators ai , a†i is as annihilation and creation operators for

the ingoing particles. The field Φ in every space-time point outside the horizon can be determined
in two ways :

• The first one is by having the data of the field on the past null infinity L− and going forward
in time.

• The second one is by having the data of the field on both the future null infinity L+ and the
horizon , and going backwards in time.

So we see that the field Φ can be written with two forms :

Φ =
∑
i

{
fiai + f?i a†i

}
(2.3.6)

Φ =
∑
i

{
pibi + p?ib

†
i + qici + q?i c†i

}
(2.3.7)

Here the {pi} solutions of the wave equation are purely outgoing (zero Cauchy data on the event
horizon) , and the {qi} are solutions which contain no outgoing component (zero Cauchy data on
L+ ). The {pi} and {qi} solutions satisfy the orhonormality conditions similar to the {fi} , with
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the only difference that the surface of integration of the integral (f, h) = ı
�
d3Σ (f (∂th?)− (∂tf)h?)

is taken to be L+ and the event horizon respectively.
So we have :

(pi, pj) = δij and (qi, qj) = δij

(
pi, p

?
j

)
= (p?i , pj) = 0

(
p?i , p

?
j

)
=
(
q?i , q

?
j

)
= −δij (pi, qj) =

(
pi, q

?
j

)
= (p?i , qj) = 0

In analogy to the interpretation of the operators ai , a†i as annihilation and creation operators,
the operators bi , b†i can be interpreted as the annihilation and creation operators for outgoing
particles (particles on the L+ surface) . We will not bother about the interpretation of the ci ,
c†i operators because the choice of {qi} does not affect the calculation of the emission of particles
to L+ .

Since the massless field at any spacetime point can be determined by their data on L− then
the {pi} and {qi} solutions can be written as linear combination of the {fi} basis. So we have :

pi =
∑
j

(
αijfj + βijf

?
j

)
qi =

∑
j

(
γijfj + εijf

?
j

)
Using the definition of the product (2.3.5) , we can find the formula’s for αij , βij :

(pi, fk) =
∑
j

(
αij (fj , fk) + βij

(
f?j , fk

))
⇒

(pi, fk) =
∑
j

(αijδjk + βij · 0) ⇒

αik = (pi, fk) ⇒

αij = (pi, fj)

Now the same for the βij :

(pi, f?k ) =
∑
j

(
αij (fj , f?k ) + βij

(
f?j , f

?
k

))
⇒
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(pi, f?k ) =
∑
j

(αij · 0 + βij (−δjk)) ⇒

βik = − (pi, f?k ) ⇒

βij = −
(
pi, f

?
j

)
Some other very important relations we can find using the normalization conditions of the {pi}

and {qi} solutions are :

(pi, pi) = 1 ⇒

∑
j

(
αijfj + βijf

?
j

)
,
∑
k

(αikfk + βikf
?
k )

 = 1 ⇒

∑
j,k

(
αijα

?
ik (fi, fk) + αijβik (fj , f?k ) + βija

?
ik

(
f?j , fk

)
+ βijβ

?
ik

(
f?j , f

?
k

))
= 1

 ⇒
∑
j

αijα
?
ij − βijβ?ij = 1 (2.3.8)

(pi, p?i ) = 0 ⇒

∑
j

(
αijfj + βijf

?
j

)
,
∑
k

(α?ikf?k + β?ikfk)

 = 0 ⇒

∑
j,k

(
αijαik (fi, f?k ) + αijβik (fj , fk) + βija

?
ik

(
f?j , f

?
k

)
+ βijβik

(
f?j , fk

))
= 0 ⇒

∑
j

αijβij − βijaij = 0 (2.3.9)

Equations (2.3.8) and (2.3.9) are very important and will be used later . Having found the
formula’s for αij , βij we can now move on to find the relations between the operators bi and ai ,
a†i . Using the two forms of the field operator we have :

Φ =
∑
i

{
fiai + f?i a†i

}
=
∑
i

{
pibi + p?ib

†
i + qici + q?i c†i

}
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Taking the product of pk of each side of the above equation we get :

∑
i

{
(fi, pk) ai + (f?i , pk) a†i

}
=
∑
i

{
(pi, pk) bi + (p?i , pk) b†i + (qi, pk) ci + (q?i , pk) c†i

}
And using the orthonormality relations and the formulas of αij , βij we have :

∑
i

{
(fi, pk) ai + (f?i , pk) a†i

}
=
∑
i

{
δikbi + 0 · b†i + 0 · ci + 0 · c†i

}
⇒

bi =
∑
j

{
αijaj − β?ija

†
j

}
(2.3.10)

with analogous procedure we find that :

b†i =
∑
j

{
−βijaj + αija†j

}
(2.3.11)

Equations (2.3.10) , (2.3.11) are called Bogoliubov transformations. Let us now define the
initial vacuum state |0in〉 which is the state containing no incoming particles. This means that
there are no particles on the surface L− :

ai |0in〉 = 0 ∀ i

The particle number operator of the “ ı ” mode for the ingoing particles is :

Ni = a†i ai

and gives for the vacuum state :

〈0in|Ni |0in〉 = 〈0in|a†i ai |0in〉 = 0

However , the number operator for the outgoing particles is :

N
′

i = b†i bi

and the initial vacuum state will not appear to be a vacuum state to an observer at L+ . The
expectation of the number operator for this observer is :

〈0in|N
′

i |0in〉 = 〈0in|b†i bi |0in〉
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and using equations (2.3.10) , (2.3.11) we have :

〈0in|b†i bi |0in〉 = 〈0in|
∑
j

{
−βijaj + αija†j

}∑
k

{
αikak − β?ika†k

}
|0in〉 =

= 〈0in|
∑
j,k

(
−βija?ikajak+βijβ?ikaja†k + αija

?
ika†j ak − αijβ?ika†j a†k

)
|0in〉 =

= 〈0in|
∑
j,k

(
βijβ

?
ikaja†k

)
|0in〉 =

=
∑
j,k

βijβ
?
ik 〈0in|aja†k |0in〉 =

=
∑
j,k

βijβ
?
ikδjk =

∑
j

βijβ
?
ij =

∑
j

|βij |2

So finally we see that :

〈0in|N
′

i |0in〉 = 〈0in|b†i bi |0in〉 =
∑
j

|βij |2 6= 0

In conclusion, the only thing that remains to be done is to calculate the coefficients βij for the
collapsing shell , and we can determine the number of particles created by the gravitational field
and emitted to L+ .

2.3.4 Temperature of a Black hole

We move on now to the exact calculation of the crucial βij terms. In order to do this we have to
solve the Klein - Gordon equation of the field Φ :

gab∇aΦ∇bΦ = 0 (2.3.12)

In order to solve the above equation we express Φ in the form12 :

Φ = 1
r
Rωl(r)Υlm(θ,φ)e

−ıωt

12Because the space-time metric in our case is spherically symmetric we can compose the solution in spherical
harmonics
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Substituting Φ in equation (2.3.12) we get :

−d
2Rωl
dr2
?

+
(
V (r)− ω2)Rωl = 0 (2.3.13)

where :

V(r) =
(

1− 2M
r

)(
l (l + 1)
r2 + 2M

r3

)
and r? = r + 2Mlog

∣∣∣ r2M − 1
∣∣∣

Although we can not solve equation (2.3.13) completely , we can find the asymptotic form of the
solution at t = ±∞ :

• t = −∞

For t = −∞ we have r =∞ for the incoming modes and V(r) becomes :

r →∞ ⇒ V(r) → 0 ⇒

−d
2Rωl
dr2
?

+
(
0− ω2)Rωl = 0 ⇒

d2Rωl
dr2
?

+ ω2Rωl = 0 ⇒

Rωl = e±ıωr?

So the asymptotic form of the solution for the ingoing modes13 is :

fω ∼
1
r
e−ıω(r?+t) = 1

r
e−ıωv

where v is the advanced coordinate defined as :

v = t+ r + 2Mlog
∣∣∣ r2M − 1

∣∣∣
• t = +∞

For t = +∞ there are actually two possibilities for the solution. The first one is that the waves go
to infinity (r =∞) and these waves are called pω . The second possibility is that the waves go to
the singularity. These wave solutions are called qω .14 Since pω’s are the outgoing modes then :

13We drop the l, m in our expression
14Remember that we have mentioned the pω ’s and qω ’s basis at equation (2.3.7) .
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pω ∼
1
r
e−ıω(t−r?) = 1

r
e−ıωu

where u is the retarded coordinate :

u = t− r − 2Mlog
∣∣∣ r2M − 1

∣∣∣

The qω’s are left unspecified because only the outgoing modes actually interfere in the calcula-
tion. As we have mentioned before each solution pω can be expressed as an integral with respect
to ω

′ in the {fω′} basis15 :

pω =
∞�

0

(
aωω′ fω′ + βωω′ f

?
ω′
)
dω
′

Remember that our initial purpose was to calculate the βωω′ terms in order to find the expecta-
tion value of the number operator in L+ . As Hawking points out in his 1975 paper, if we trace back
the pω solution from L+ to L− , a part of pω which we call p(1)

ω will be scattered by the potential
V(r) in equation (2.3.13) . produced by the Schwarzschild metric. This scattering process does not
change the frequency so it is not important in our case. The remainder part of pω , called p

(2)
ω will

be partly scattered and partly reflected through the center and will eventually emerge to L− . This
is the part of the pω solution that produces the interesting results, as Hawking argues in his paper .

Let us now consider for once more the Penrose diagram for the collapsing shell shown in the
next page:

15Previously it was written in the summation form but now we will use the integral form
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Figure 2.3.5: Penrose Diagram for the collapsing Shell

The null rays at v = v0 shown in the diagram is the last inward propagating ray that reaches L+ .
Inward propagating rays with v > v0 enter the horizon and fall to the singularity. Lets consider a
region of space-time close to the horizon r → 2M . Substituting to u = t− r− 2Mlog

∣∣ r
2M − 1

∣∣we
see that u→∞ as r → 2M . This means that the effective frequency of the wave p(2)

ω ∼ 1
r e
−ıωu is

very big near the horizon, so it would propagate with very good approximation by geometric optics
(following the null geodesic) , through the center of the body and out to L− .

So since we can use the geodesic curves as a good approximation, one can estimate the form of
p

(2)
ω on L− with incoming rays near v = v0 . This can be done by tracing back the null geodesic

from L+ to L− and keeping track of its affine distance with the the horizon H+ and the incoming
null ray v = v0 . The result which we will present with no proof is :

u = 1
κ
log (v0 − v)

The above formula hold for small positive v0 − v and κ is the surface gravity , κ = 1
4M for the

Schwarzschild black hole . Thus on L− p
(2)
ω will be :
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p(2)
ω ∼

{
0 v > v0

e
ıω
κ log(v0−v) v < v0

Having found the formula for p(2)
ω it is fairly easy to calculate αωω′ , βωω′ by taking the Fourier

transform :

αωω′ =
v0�

−∞

e
ıω
κ log(v0−v)eıω

′
vdv

βωω′ =
v0�

−∞

e
ıω
κ log(v0−v)e−ıω

′
vdv

we will calculate αωω′ , βωω′ for v0 = 0 so that :

αωω′ =
0�

−∞

e
ıω
κ log(−v)eıω

′
vdv

βωω′ =
0�

−∞

e
ıω
κ log(−v)e−ıω

′
vdv

Lets name αωω′ = Φω(ω′) . We see from the above expressions that βωω′ = Φω(−ω′). Next we will
show that :

Φω(−ω′) = −e−πωκ Φω(ω′) for ω
′
> 0

Because we want to evaluate the integral Φω(ω′) =
� 0
−∞ e

ıω
κ log(−v)eıω

′
vdv =

� 0
−∞ Z(v)dv , we

imagine that v is a complex number and integrate
�
Z(v)dv on a path in the complex v - plane .

• ω
′
> 0

For the the case where ω
′ is positive we choose the contour show below :
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Figure 2.3.6: Contour in the v - plane for ω
′
> 0

Since Z(v) is analytic inside the contour we have :
�
Z(v)dv = 0

Lets name the different parts of the contour :
C1 = negative Real axis
C2 = positive imaginary axis
C3 = Quarter of a circle with radius R that goes to infinity

Since R −→∞ we get :
�
Z(v)dv = 0 ⇒

�
C1

Z(v)dv +
�
C2

Z(v)dv +
�
C3

Z(v)dv = 0 ⇒

�
C1

Z(v)dv = −
�
C2

Z(v)dv ⇒

Φω(ω′) = −
�
C2

Z(v)dv

To calculate the integral on the imaginary axis we change variables v = ıx, x ∈ R, x > 0 :
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Φω(ω′) = −
�
C2

Z(v)dv = −ı
∞�

0

e
ıω
κ log

(
xe−ı

π
2
)
e−ω

′
xdx ⇒

Φω(ω′) = −ıe(
πω
2κ )

∞�

0

e
ıω
κ log(x)e−ω

′
xdx ω

′
> 0

• ω
′
< 0

If ω′ is negative we choose the path of integration in the negative imaginary axis as shown below :

Figure 2.3.7: Contour in the v - plane for ω
′
< 0

The only difference with before is that we have to integrate in the negative imaginary axis. So
we change variables v = −ıx, x ∈ R, x > 0 :

Φω(ω′) = −
�
C2

Z(v)dv = −ı
∞�

0

e
ıω
κ log

(
xeı

π
2
)
eω
′
xdx ⇒

Φω(ω′) = ıe(−
πω
2κ )

∞�

0

e
ıω
κ log(x)eω

′
xdx ω

′
< 0
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Hence we see that if ω′ > 0 :

Φω(ω′) = −ıe(
πω
2κ )

∞�

0

e
ıω
κ log(x)e−ω

′
xdx (2.3.14)

Φω(−ω′) = ıe(−
πω
2κ )

∞�

0

e
ıω
κ log(x)e−ω

′
xdx (2.3.15)

So it is pretty straightforward that if we divide equations (2.3.14 ) , (2.3.15 ) we get :

Φω(−ω′) = −e−πωκ Φω(ω′) ω
′
> 0 (2.3.16)

which is what we wanted to prove. Having proved (2.3.16 ) we know the relation between αωω′

βωω′
16 :

βωω′ = −e−πωκ αωω′ ⇒ αij = −e
πωi
κ βij

As the final step we will use the following formula that we have proved earlier 17 :

∑
j

αijα
?
ij − βijβ?ij = 1 ⇒

∑
j

(
e

2πωi
κ βijβ

?
ij − βijβ?ij

)
= 1 ⇒

∑
j

βijβ
?
ij

(
e

2πωi
κ − 1

)
= 1 ⇒

∑
j

βijβ
?
ij = 1

e
2πωi
κ − 1

The above result gives us the expectation value of the number operator for outgoing particles :

〈0in|N
′

i |0in〉 = 〈0in|b†i bi |0in〉 =
∑
j

βijβ
?
ij = 1

e
2πωi
κ − 1

This is the Planck distribution for a black body radiation at temperature :

16Since α
ωω
′ = Φ

ω
(
ω
′
) , β

ωω
′ = Φ

ω
(
−ω′
)

17See equation (2.3.8)
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TH = ~κ
2π

TH is called Hawking temperature . For the Schwarzschild black hole the surface gravity is κ = 1
4M

so the Hawking temperature is :

TH = ~κ
8πM

We will continue with some very important concepts from Quantum Information Theory.



Chapter 3

Quantum Information

In the previous chapter we derived the Hawking Radiation for a Schwarzschild Black hole, and
showed that it is the same as the Planck distribution for a black body with temperature1 TH = ~κ

8πM
. The fact that the radiation appears to be thermal poses some important questions. What happens
to the information that fell into the black hole? Can someone reconstruct the state of the black
hole by analyzing the Hawking Radiation? Our goal is to try answer these questions that analysis
of Black Holes brought to the light. The problem generated by black Hole evaporation is known
as the Black Hole Information Paradox. In this chapter we will present the necessary notions from
Quantum Information Theory that will enable us to state the problem precisely.

3.1 Pure vs Mixed States

We will introduce now the notions of pure and mixed state in Quantum Mechanics which is ex-
tremely crucial if we want to understand the information Paradox

3.2 Pure State

A pure state of a quantum system is denoted by a vector ( ket) |Ψ〉 with unit length ( i.e 〈Ψ| Ψ〉 =
1), in a complex Hilbert space H . A pure vector state |φ〉 has a dual vector 〈φ| (bra). The inner
product for two vector states |φ〉 and |ψ〉 is defined as :

Inner Product = (φ, ψ) = 〈φ| ψ〉

1G=c=1

43
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3.2.1 Operators

Given the vectors and the dual vectors of the Hilbert space we can define operators that map vectors
from the Hilbert space H to another vector in H :

3.2.2 Identity Operator

Consider the complete basis {|n〉} of H , and the operator :

∧
I =

∑
n

|n〉 〈n|

The above operator is called the identity operator, because if it operates on a ket |Ψ〉 it maps to
the same ket again :

∧
I |Ψ〉 =

∑
n

|n〉 〈n| Ψ〉 = |Ψ〉

The identity operator is very useful in proving propositions and will be used extensively.

3.2.3 Trace Operation

Let us define the trace operation of an arbitrary operator
∧
A as :

Tr

(
∧
A

)
=
∑
n

〈n|
∧
A |n〉

where we sum over a set of basis vectors {|n〉} . The matrix elements of the operator
∧
A are :

Anm = 〈n|
∧
A |m〉

In the matrix representation the trace is simply the sum over all diagonal elements of the matrix
Anm .

3.2.3.1 Invariance of the Trace

A nice property of the trace that makes it extremely useful is that it does not depend on the choice
of the basis vectors we use. Suppose we choose another basis {|k〉}. The trace in this basis is :

Tr

(
∧
A

)
basis {|k〉}

=
∑
k

〈k|
∧
A |k〉

Applying the identity operator twice we have :
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Tr

(
∧
A

)
basis {|k〉}

=
∑
k

∑
n

(
〈k| |n〉 〈n|

∧
A |n〉 〈n| |k〉

)
=

=
∑
k

∑
n

〈k| n〉 〈n|
∧
A |n〉 〈n| k〉 =

∑
k

∑
n

〈k| n〉 〈n| k〉 〈n|
∧
A |n〉 =

=
∑
n

〈n|
∧
A |n〉 = Tr

(
∧
A

)
basis {|n〉}

⇒

Tr

(
∧
A

)
basis {|k〉}

= Tr

(
∧
A

)
basis {|n〉}

3.2.3.2 Density Operator

Let us now examine the following operator :

∧
PΨ = |Ψ〉 〈Ψ|

First we will be prove two properties of
∧
PΨ :

•
∧
PΨ is Hermitian : (

∧
PΨ

)†
= (|Ψ〉 〈Ψ|)† = |Ψ〉 〈Ψ| =

∧
PΨ

• Also2
∧
P 2

Ψ =
∧
PΨ:

∧
P 2

Ψ =
∧
PΨ

∧
PΨ = (|Ψ〉 〈Ψ|) (|Ψ〉 〈Ψ|) =

= |Ψ〉 〈Ψ| Ψ〉 〈Ψ| = |Ψ〉 〈Ψ| ⇒

∧
P 2

Ψ =
∧
PΨ

• Tr
(
∧
PΨ

)
= 1 :

Tr

(
∧
PΨ

)
=
∑
n

〈n|
∧
PΨ |n〉 =

∑
n

〈n| |Ψ〉 〈Ψ| |n〉 =

=
∑
n

〈Ψ| |n〉 〈n| |Ψ〉 = 〈Ψ| Ψ〉 = 1

2We assume that 〈Ψ| Ψ〉 = 1
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Expectation values of an arbitrary operator
∧
O can be expressed in terms of the operator

∧
PΨ

instead of the state vector |Ψ〉 . We have 3 :〈
∧
O

〉
Ψ

= 〈Ψ|
∧
O |Ψ〉 ⇒

〈
∧
O

〉
Ψ

=
∑
n

〈Ψ| n〉 〈n|
∧
O |Ψ〉 ⇒

〈
∧
O

〉
Ψ

=
∑
n

〈n|
∧
O |Ψ〉 〈Ψ| n〉 ⇒

〈
∧
O

〉
Ψ

=
∑
n

〈n|
∧
O
∧
PΨ |n〉 ⇒

〈
∧
O

〉
Ψ

= Tr

(
∧
O
∧
PΨ

)
= Tr

(
∧
PΨ
∧
O

)
In the same manner we can express probabilities in terms of

∧
PΨ :

|〈Φ| Ψ〉|2 = 〈Φ| Ψ〉 〈Ψ| Φ〉 =
∑
n

〈Φ| n〉 〈n| Ψ〉 〈Ψ| Φ〉 =

=
∑
n

〈n| Ψ〉 〈Ψ| Φ〉 〈Φ| n〉 =
∑
n

〈n|
∧
PΨ Φ〉 〈Φ| n〉 = Tr

(
∧
PΨ Φ〉 〈Φ|

)

We see therefore that we can describe all the measurable quantities from the state |Ψ〉 using the
operator

∧
PΨ . We rename at this point the operator

∧
PΨ as ∧ρ :

∧
ρ = |Ψ〉 〈Ψ|

The above operator is now called the density operator or density matrix and describes completely
a system in the state |Ψ〉 .

Example. Lets imagine that the state of a quantum system is a superposition of spin up and down
(in z axis) :

|ψ〉 = 1√
2

(|↑z〉+ |↓z〉)

In the basis {|↑z〉 , |↓z〉} the density matrix is :

3In the last step we use the formula : Tr

(∧
A
∧
B

)
= Tr

(∧
B
∧
A

)
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∧
ρ = |Ψ〉 〈Ψ| = 1√

2
(|↑z〉+ |↓z〉)

1√
2

(〈↑z|+ 〈↓z|) =

= 1
2 (|↑z〉 〈↑z|+ |↑z〉 〈↓z|+ |↓z〉 〈↑z|+ |↓z〉 〈↓z|)

And in matrix form :

ρ =


1
2

1
2

1
2

1
2


We can easily verify that the trace of the matrix is :

Tr
(
∧
ρ
)

= 1
2 + 1

2 = 1

3.3 Mixed State

We have seen that the density matrix ∧
ρ = |Ψ〉 〈Ψ| can describe all the physically observable

properties in state |Ψ〉 . The advantage of using the density matrix becomes clear when we introduce
mixtures of pure states described by the density operator :

∧
ρ =

N∑
k=1

pk |Ψk〉 〈Ψk|

where {|Ψk〉} is some set of pure states , not necessarily orthogonal . Also the numbers pk satisfy
the relations 4:

0 < pk < 1 ,
N∑
k=1

pk = 1

The state of a system described by the previous density operator is called a Mixed State . We can
prove now that that the expectation value of observables in a mixed state are probabilistic weighted
averages of the expectation values of the pure states. Suppose we want to find the expectation value
of the operator

∧
O . So we have :

Tr

(
∧
ρ
∧
O

)
=
∑
k

pkTr

(
|Ψk〉 〈Ψk|

∧
O

)
=
∑
k

pk
∑
n

〈n| |Ψk〉 〈Ψk|
∧
O |n〉 =

4From the following relation it is easy to prove that Tr

(
∧
ρ

)
= 1
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=
∑
k

pk
∑
n

〈Ψk|
∧
O |n〉 〈n| |Ψk〉 =

∑
k

pk 〈Ψk|
∧
O |Ψk〉 ⇒

Tr

(
∧
ρ
∧
O

)
=
∑
k

pk

〈
∧
O

〉
k

We can view the mixed state as a statistical mixture of pure states |Ψk〉 , each one with probability
pk .

There are many ways to determine whether a system is in a pure or mixed state . Some of them
are presented below :

Pure State :
∧
ρ

2
= ∧ρ , Tr

(
∧
ρ

2
)

= 1 (3.3.1)

Mixed State :

∧
ρ

2
6= ∧ρ , Tr

(
∧
ρ

2
)
< 1 (3.3.2)

3.3.1 Von Neumann Entropy

Another very important concept that we will use to determine whether the state of a system is pure
or mixed is the Von Neumann Entropy , defined as :

S(∧
ρ

) = −Tr
(
∧
ρlog

(
∧
ρ
))

∧
ρ : density matrix

In order to calculate the entropy we first diagonalize the density matrix and then take the logarithm
of the diagonal elements :

S(∧
ρ

) = −
d∑
k=1

λklog (λk)

where λk are the eigenvalues of the density matrix .
Using the Von Neumann Entropy we get another way to distinguish mixed from pure states:

Pure State :
S(∧

ρ

) = 0 (3.3.3)

Mixed State :

S(∧
ρ

) > 0 (3.3.4)
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The entropy criterion is the one we will primarily use in order to show that information is lost in
black hole evaporation .

3.4 Mixed States from Pure States - Reduced Density Ma-
trix

In this section we will show how mixed states can arise from pure states when we consider only a
subsystem of the whole quantum system. Consider systems A and B , each with a Hilbert space
HA , HB . Let the state of the composite system be :

|Ψ〉 ∈ HA ⊗HB

The state of the whole system is pure (by assumption) with density matrix 5:

ρT = |Ψ〉 〈Ψ|

If we want to consider only the system A we cannot generally assign a pure state to it but we can
assign a density matrix , called the Reduced Density Matrix 6 :

ρA ≡
∑
j

〈jB | ρT |jB〉 =
∑
j

〈jB | (|Ψ〉 〈Ψ|) |jB〉 = TrB (ρT )

As we see, we basically take the partial trace of ρT over the basis of the system B . We “trace
out” system B in order to obtain the reduced density matrix on A . If we want to find the expectation
value of an operator

∧
OA on the A system we calculate :〈

∧
OA

〉
= Tr

(
ρA
∧
OA

)

Example. Let’s assume that the state of the whole system is :

|ΨAB〉 = 1√
2

(|0A〉 |1B〉+ |1A〉 |0B〉)

with basis {|1A〉 |1B〉 , |1A〉 |0B〉 , |0A〉 |1B〉 , |0A〉 |0B〉} . First we will find the density matrix for the
whole system ρT :

5Instead of ∧ρT we will just write ρT .
6Dirac was the first to introduce this idea in 1930
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ρT = |ΨAB〉 〈ΨAB | =

= 1
2 (|0A〉 |1B〉 〈0A| 〈1B | + |0A〉 |1B〉 〈1A| 〈0B | + |1A〉 |0B〉 〈0A| 〈1B | + |1A〉 |0B〉 〈1A| 〈0B |)

Then , in order to find the reduced density matrix ρA we trace over the basis of system B
{|1B〉 , |0B〉} :

ρA =
∑
j

〈jB | ρT |jB〉 = 〈1B | ρT |1B〉+ 〈0B | ρT |0B〉 ⇒

ρA = 1
2 (|0A〉 〈0A|+ |1A〉 〈1A|)

and in matrix for 7 :

ρA =


1
2 0

0 1
2


we can verify that :

• Tr (ρA) = 1
2 + 1

2 = 1

• ρ2
A =


1
4 0

0 1
4

 6= ρA

• Tr
(
ρ2
A

)
= 1

4 + 1
4 = 1

2 < 1

• S(ρA) = −
( 1

4 log
( 1

4
)

+ 1
4 log

( 1
4
))

= 1
2 log (4) = log (2) > 0

which means that the state of the system A is mixed , according to the criteria (3.3.1) , (3.3.2) , (3.3.3) , (3.3.4) .
We conclude that a subsystem of a bigger system can be in a mixed state although the whole system
is in a pure state .

7Basis {|1A〉 , |0A〉}
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3.5 Entropy of the Product of two States

Suppose we have the state |Ψ〉 that can be written as the tensor product of two states |Ψ1〉 , |Ψ2〉 :

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉

Let’s assume that the state |Ψ1〉 has two subsystems A1 and B1 each with basis
{∣∣a1

i

〉}
,
{∣∣b1i 〉}.

Similarly the state |Ψ2〉 has two subsystems A2 and B2 , with basis
{∣∣a2

i

〉}
,
{∣∣b2i 〉}. For every

subsystem we can find the corresponding density matrix by tracing over the basis of the other
subsystem. For example the Reduced Density Matrix for the subsystem B1 is :

ρB1 =
∑
i

〈
a1
i

∣∣ ρ1
∣∣a1
i

〉
where ρ1 = |Ψ1〉 〈Ψ1|

The reduced density matrix for the subsystem B1, B2 is :

ρB1,B2 =
∑
i,j

〈
a1
i

∣∣ 〈a2
j

∣∣ ρ ∣∣a1
i

〉 ∣∣a2
j

〉
=

=
∑
i,j

〈
a1
i

∣∣ 〈a2
j

∣∣ (|Ψ1〉 ⊗ |Ψ2〉 〈Ψ1| ⊗ 〈Ψ2|)
∣∣a1
i

〉 ∣∣a2
j

〉
=

=
∑
i

〈
a1
i

∣∣ (|Ψ1〉 〈Ψ1|)
∣∣a1
i

〉
⊗
∑
j

〈
a2
j

∣∣ (|Ψ2〉 〈Ψ2|)
∣∣a2
j

〉
⇒

ρB1,B2 = ρB1 ⊗ ρB2

A very important property of the Von Neumann Entropy is called subadditivity and will be pre-
sented without proof :

If ρ = ρ1 ⊗ ρ2 then :

Sρ = Sρ1 + Sρ2

Both the relation ρB1,B2 = ρB1⊗ρB2 and the subadditivity property of the Von Neumann Entropy
will be used in the next chapter.

3.6 Pure only goes to Pure

One of the fundamentals assumptions of Quantum Mechanics and Quantum field Theory is that the
evolution of the vector state |Ψ〉 of a system is determined by a unitary operator U . An operator
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is unitary if and only if:

U U† = I

where I is the identity operator , and U† the hermitian conjugate of U .
Suppose at t = 0 the system has the pure state |Ψ〉0 . At later time t the new ket |Ψ〉t is

given by the evolution operator Ut :

|Ψ〉t = Ut |Ψ〉0

Lets see how the density matrix transforms at later times . By the definition of the density matrix
we have :

ρt ≡ |Ψ〉t 〈Ψ|t = Ut |Ψ〉0 〈Ψ|0 U
†
t = Ut ρ0 U

†
t

We can now calculate ρ2
t :

ρ2
t =

(
Ut ρ0 U

†
t

)(
Ut ρ0 U

†
t

)
⇒

ρ2
t = Ut ρ0

(
U†t Ut

)
ρ0 U

†
t ⇒

ρ2
t = Ut ρ0 I ρ0 U

†
t ⇒

ρ2
t = Ut ρ0 I ρ0 U

†
t ⇒

ρ2
t = Ut ρ

2
0 U
†
t ⇒

(
since ρ2

0 = ρ0
)

ρ2
t = Ut ρ0 U

†
t ⇒

ρ2
t = ρt

We see that the density operator satisfies the purity condition (3.3.1) for every time t . This very
important conclusion states that if we start with a pure state of a quantum system then the state
remains pure as long as the evolution operator is unitary.
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3.7 No Cloning Theorem

A very important theorem in Quantum Information is the no - cloning theorem. It was stated by
Wootters and Zurek and Dieks in 1982 [3] . The theorem states that we cannot create identical
copies of an unknown quantum state We must assume the cloning is done with a unitary operator,
hence the name “ no- cloning ” .

3.7.1 Proof of the Theorem

Imagine we have the system A in state |Ψ〉A which we want to copy and another system B in the
initial state |e〉B . Assuming the systems are independent, the composite system will be in the
state |Ψ〉A ⊗ |e〉B . Let us suppose that there exists a unitary operator U 8 that acts as copier :

U |φ〉A |e〉B = |φ〉A |φ〉B (3.7.1)

for all possible states |φ〉A .
Now , we know that every unitary operator preserves the inner products between states. So ,

let’s take the inner product of the two states |φ〉A |e〉B and |ψ〉A |e〉B :

〈e|B 〈φ|A |ψ〉A |e〉B = 〈φ|A ψ〉A

But if we use equation (3.7.1) we get :

〈e|B 〈φ|A |ψ〉A |e〉B = 〈e|B 〈φ|A U
†U |ψ〉A |e〉B =

= 〈φ|B 〈φ|A |ψ〉A |ψ〉B = (〈φ|A ψ〉A)2

So we conclude that :

〈φ|A ψ〉A = (〈φ|A ψ〉A)2 ⇒

〈φ|A ψ〉A = 1⇒ |φ〉A = |ψ〉A or 〈φ|A ψ〉A = 0⇒ {|φ〉A , |ψ〉A orthogonal}

But since the above conditions do not hold for two arbitrary states we deduce that the existence of
the operator U is impossible. Hence we have proved the no cloning theorem.

If quantum cloning was possible we could use it to send messages faster than the speed of light.
We could see how this would be possible by considering the following scenario. Suppose we create

8Do not confuse U here with the evolution operator we mentioned before
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two particles a and b with entangled spins on the z axis . Then the state of the whole system would
be :

|Ψab〉 = 1√
2

(|↑z, a〉 |↓z, b〉+ |↓z, a〉 |↑z, b〉)

We then sent particle a to observer A and particle B to observer B. Observers A and B are
very far from each other. Lets also assume that they have decided beforehand that observer B
will ether make a measurement of the spin in the z axis or he will not perform any measurement.
Observer A could know whether B decided to measure the particle or not by making many clones
of the state of particle a . Then he would measure the spin of all the cloned particles (which share
the same state with particle a) in the z axis. If he found all the particles to have spin up or spin
down he would deduce that B made a measurement of particle b and collapsed the wave-function
to ether spin down or spin up .9 If on the other hand observer A found that approximately half of
the particles have spin up and the other half spin down, he would deduce that B did not perform
a measurement. Hence if cloning was really allowed we could send information faster than light,
violating causality.10

9If particle a has spin up then particle b has spin down , and if a has spin down particle b has spin up
10Credit to Giorgos Katsianis



Chapter 4

Information Loss in Black Hole
Evaporation

In Chapter 2 we saw that Black Holes radiate particles via Hawking Radiation. In Chapter 3
we introduced all the necessary tools ( entropy, density matrix e.t.c ) from Quantum Information
Theory. We are ready at this point to show what exactly we mean by information loss in Black
Hole evaporation.

4.1 The Entropy Problem

In 1972 Bekenstein [4] published a paper in which he presented arguments that Black Holes must
be associated with an entropy proportional to the surface area of the horizon. The main reason for
assigning an entropy to a black hole is so that the second Law of Thermodynamics in not violated.

Suppose we take a box containing some gas and throw it in the black hole. The gas in the box
has some entropy , so after it has fallen into the black hole the total entropy of the universe has
decreased if the black hole does not have any entropy. Notice however, that as the box falls into
the black hole , the mass of the black hole increases by a small amount and so does the surface of
the horizon 1. If we want to save the 2nd law of Thermodynamics we should assign an entropy
SBH to the Black Hole so that :

dStotal
dt

= dSmatter
dt

+ dSBH
dt

≥ 0

and the 2nd Law still holds. Lets see now a simplified argument which will help us understand
why the entropy should be proportional to the area of the black hole :

1R = 2GM
c2

55
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The entropy of a system is a measure of the maximum amount of information that can be
contained in the system :

SBH ∼ max number of bits of information (4.1.1)

Next, suppose we have a black hole of mass M and we want to send one bit of information in.
So, we choose a massless particle and throw it in the black hole. But since we want just one bit
of information, the wave length λ of the particle should be in order of the Schwarzschild radius of
the Black hole :

λp ∼ Rs

If the particles’s wavelength were of order less than the Schwarzschild radius2 then we could say
more than just whether the particle is inside the Black hole or not, but remember we want to sent
the least amount of information we can send in the black hole3 . Since the wavelength is of order
of RS then the energy of the particle will be :

Ep ∼
~c
λp
∼ ~c
Rs

So the energy of the Black Hole increases by Ep :

dEBH ∼ Ep ∼
~c
Rs
⇒

c2dMBH ∼
~c
Rs
⇒

dMBH ∼
~c
c2Rs

⇒

dMBH ∼
~
cRs

(4.1.2)

Now we can use the usual equation for the Schwarzschild radius :

Rs = 2GMBH

c2
⇒

dMBH = c2

2GdRs (4.1.3)

2If the wavelength were larger than RS then we would not know for sure whether the particle is inside the black
hole or not

3Of course if one wanted to be more precise he should prove why this is the least amount of information
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Combining equations (4.1.2) and (4.1.3) :

c2

2GdRs ∼
~
cRs

⇒

RsdRs ∼
2G~
c3
⇒

d
(
R2
s

)
∼ 2G~

c3

And since the area of the horizon is proportional to the square of the radius A ∼ R2
s :

dA ∼ 2G~
c3

(4.1.4)

We see therefore that if we add one bit of information into the Black Hole the surface of the the
horizon changes by a constant of number. We deduce therefore that the most amount of information
a black hole can contain ( integrating eq (4.1.4) ) is proportional to the surface area :

Max number of bits of information ∼ c3

2G~A

But from equation (4.1.1) we get that :

SBH ∼
c3

2G~A

In fact we can find the exact relation between entropy and the surface area of the horizon without
the proportionality constant by using the Hawking temperature we derived in the Chapter 2. The
Hawking Temperature is given by the formula 4 :

TH = ~c3

8πGM
and

A = 4πR2
s = 4π

(
2GMBH

c2

)2
= 16πM2

BHG
2

c4
⇒

M2
BH = c4

16πG2A

Now , from usual thermodynamics we have :

THdSBH = dE ⇒ ~c3

8πGMBH
dSBH = c2 dMBH ⇒

4With all the constants c ,G , ~
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dSBH = 8πG
~c

MBHdMBH ⇒ dSBH = 4πG
~c

d
(
M2
BH

)
⇒

dSBH = 4πG
~c

c4

16πG2 dA ⇒ dSBH = c3

4G~dA ⇒

SBH = c3

4G~A

The fact that black Holes have entropy may be necessary if we want to save 2nd Law of Thermody-
namics, but this poses another more serious problem. We know that the entropy of a macroscopic
system is given by :

S = LogN

where N is the number of microstates the system has for given macroscopic parameters ( e.g.
Temperature ) . So the number of microstates a black hole has is :

N = eSBH

For a solar Black Hole N ∼ 101077 , which is an incredibly big number. It is not at all clear
where is such a big number of states is encoded. In General Relativity Black holes have no - hair,
meaning they quickly settle to the same equilibrium geometries that are described at most by three
parameters. So Black Holes seem to be the simplest macroscopic objects found in nature. But on
the other hand the entropy that a Black Hole has implies it must have a big number of microstates.
Where these deformations of the geometry exist still remains an unsolved problem.

4.2 Information Loss

We have seen how Black Holes emit particles through Hawking Radiation. What we have not yet
done is to calculate the state of the radiation. There is a simple picture which describes the way a
Black Hole evaporates that will help us find the the state of the Radiation. In the vacuum pairs,
of particles and antiparticles are continuously being created and annihilated. For example pairs of
electrons and positrons are created and destroyed all the time even in vacuum. If there is a strong
electric field present it is possible to “pull apart” these pairs and make them real, in the sense
that we can detect two opposite charge currents in the laboratory . This phenomenon is called the
Schwinger effect [5].

The same effect could in principle happen near the Black Hole horizon, where instead of the
electric field we have the gravitational field of the Black Hole. If by chance one particle is created
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just inside the horizon and its antiparticle just outside the horizon then one inside would fall into the
singularity and the one outside could escape to infinity, where it would be detected by an observer as
Hawking Radiation. The following analysis in this chapter will show that the state of the radiation
is mixed even though we started with a pure state. This is normal because what we did was to
consider only the particles that go to infinity and not the “inside particles” that they are entangled
with. If we consider both the “inside” and the “outside” system then the state will be pure , which
is consistent with unitary evolution. The problem arises when the Black Hole evaporates completely
there is no “inside” system any more and we will only be left with the Hawking Radiation. So it
seems that there is a fundamental violation of unitarity in Quantum Mechanics where pure states
only evolve to pure states. This is what we mean by information Loss in Black Hole evaporation.

4.3 Vacuum State in Different Basis

In chapter 2 we saw that we can decompose the field operator Φ in many different basis. We
can choose any coordinate time t and decompose the field into its positive and negative frequency
modes with respect to this choice of t . Even in flat space-time accelerated observers detect particles
even though for inertial observers we have the vacuum or no particle state 5. In fact this is the
reason why (for the Black Hole geometry) the incoming vacuum state at past null infinity appears
as Hawking radiation for an observer at future null infinity.

Let the field Φ be expanded in some basis
{
fn(x)

}
:

Φ =
∑
n

{
fn(x)an + f?n(x)a†n

}
In this basis, the vacuum state is defined as :

an |0a〉 = 0 ∀ n

Since in curved space-time there is no unique choice of the time coordinate t , we can choose a
different time t̃ which correspond to a different basis

{
hn(x)

}
:

Φ =
∑
n

{
hn(x)bn + h?n(x)b†n

}
Now in this basis the vacuum would be defined as :

bn |0b〉 = 0 ∀ n

We wish to find the relation between the vacuum states |0a〉 , |0b〉. This is relatively easy to do by

5See Chapter 2 : Unruh Effect
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defining the usual inner product :

(f, g) = ı

�
dΣµ (f∂µg? − g?∂µf)

From the definition of the inner product we have for the orthonormal basis
{
fn(x)

}
:

(fm, fn) = δmn, (fm, f?n) = 0, (f?m, f?n) = −δmn

From the two different expansions we have :

∑
n

{
fn(x)an + f?n(x)a†n

}
=
∑
n

{
hn(x)bn + h?n(x)b†n

}
⇒

am =
∑
n

{
αmnbn + βmnb†n

}
with αmn =

(
hn(x), fm(x)

)
, βmn =

(
h?n(x), fm(x)

)
. From the definition of the vacuum |0a〉 we

have :

am |0a〉 = 0 ⇒

∑
n

{
αmnbn + βmnb†n

}
|0a〉 = 0 (4.3.1)

The above equation has the solution :

|0a〉 = Ce
− 1

2

∑
m,n

b†mγmnb†n
|0b〉

where γ is the symmetric matrix :

γ = 1
2

(
a−1β +

(
a−1β

)T)
We will not derive this solution for the general case but only for the case of one mode . In the case
of one mode equation (4.3.1) becomes :

(
αb + βb†

)
|0a〉 = 0 ⇒

(
b + β

α
b†
)
|0a〉 = 0 ⇒
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(
b + γb†

)
|0a〉 = 0 where γ = β

α
(4.3.2)

Lets prove that equation (4.3.2) has a solution of the form :

|0a〉 = Ceµb†b† |0b〉

where C is a normalization constant and µ is a number that we have to determine with respect
to γ . A very useful relation we will use is the following :

b
(
b†b†

)n =
(
b†b†

)nb + 2nb†
(
b†b†

)n−1 ∀ n ≥ 1 (4.3.3)

Proof. From the commutator relation :
[
b, b†

]
= 1 we have :

bb† − b†b = 1 ⇒ bb† = b†b + 1

Lets start with the right side of the formula we want to prove :

b
(
b†b†

)n = b
(
b†b† . . . b†b†

)︸ ︷︷ ︸ =
2n

(
bb†

) (
b† . . . b†

)︸ ︷︷ ︸
2n−1

=

=
(
1 + b†b

) (
b† . . . b†

)︸ ︷︷ ︸
2n−1

=
(
b†
)2n−1 + b†b

(
b†
)2n−1 =

=
(
b†
)2n−1 + b†

(
1 + b†b

) (
b†
)2n−2 =

(
b†
)2n−1 +

(
b†
)2n−1 + b†b†b

(
b†
)2n−2 =

= . . . . . . . . . = 2n
(
b†
)2n−1 +

(
b†b†

)nb = 2nb†
(
b†b†

)n−1 +
(
b†b†

)nb

If we expand now the exponential in the power series we get :

Ceµb†b† = C
∑
n=0

µn

n!
(
b†b†

)n
we will now calculate b

(
Ceµb†b†

)
|0b〉 and see what we get :

b
(
Ceµb†b†

)
|0b〉 = Cb

(∑
n=0

µn

n!
(
b†b†

)n) |0b〉 =

= C

(∑
n=0

µn

n! b
(
b†b†

)n) |0b〉 = C

(
b |0b〉+

∑
n=1

µn

n! b
(
b†b†

)n |0b〉) =
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= C

(
0 +

∑
n=1

µn

n!

[(
b†b†

)nb + 2nb†
(
b†b†

)n−1] |0b〉) =

= C

(∑
n=1

2nµn

n!

[
b†
(
b†b†

)n−1] |0b〉) =

= 2µb†
(∑
n=1

C
µn−1

(n− 1)!
(
b†b†

)n−1
)
|0b〉 =

= 2µb†
(
C
∑
n=0

µn

n!
(
b†b†

)n) |0b〉 =

= 2µb†
(
Ceµb†b†

)
|0b〉 ⇒

b
(
Ceµb†b†

)
|0b〉 = 2µb†

(
Ceµb†b†

)
|0b〉 (4.3.4)

Comparing the following equations ( (4.3.2) and (4.3.4) ) :

(
b + γb†

)
|0a〉 = 0 , b

(
Ceµb†b†

)
|0b〉 − 2µb†

(
Ceµb†b†

)
|0b〉 = 0

we see that if µ = − 1
2γ then :

|0a〉 = Ceµb†b† |0b〉

is a solution to equation
(
b + γb†

)
|0a〉 = 0 , which is what we wanted to prove. If we expand

|0a〉 we have :

|0a〉 = C0 |0b〉+ C2b†b† |0b〉+ C4b†b†b†b† |0b〉+ . . . . . .

where Cn = C
(
−γ2
)n 1

n!
We see therefore that although in the

{
fn(x)

}
basis we have the vacuum state , in the

{
hn(x)

}
basis we have a part with zero particles b , a part with two particles b , and so on . This is
equivalent to saying that different observers will in general have different vacuum states . The goal
in the next sections is to describe an accurate visual description of particle creation near the horizon
and finally show how the initial vacuum state becomes an entangled superposition of outgoing and
ingoing particle states.
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4.4 How Wavemodes move in Spacetime

In order to study the Hawking Radiation (as we have mentioned in previous chapter) one should
solve the wave equation of the field Φ for the Schwarzschild metric. Although there isn’t a complete
analytical solution to the equation there are many approximate solutions. We will use the “eikonical
approximation” which will provide us with a satisfying qualitative view of how the field evolves in
each spacetime slice. We will consider only the harmonic l = 0 (s wave) in this treatment.

4.4.1 Wavemodes in Flat Spacetime

From the wave equation in flat Spacetime :

�Φ = 0

we see that each wavemode travels at the speed of light as a massless particle. Lets depict a
wavemode on two spacelike slices in flat spacetime :

Figure 4.4.1: Evolution of one wavemode in two t = constant spacelike slices for Flat Spacetime

At each point in the initial spacelike slice the wavemode has an amplitude and a phase. For
every point in the slice we draw radial null geodesics which in flat space-time are straight lines
at 450 angle , as seen in the above figure. For every geodesic we assign the same phase as the
point in the initial spacelike slice. Each null geodesic has therefore the same phase. This process
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defines exactly the evolution of a wavemode from an initial slice to the future of the slice. The
two t = constant spacelike slices in the figure conserve the form of the initial wavemode since the
distance between the points AB remains the same in each slice. Hence, the wavemode does not
get deformed as the slice moves in time, which is characteristic of flat space-time. Lets clarify two
questions that may have appeared in the readers mind.

First, why does each null geodesic have the same phase ? This is not at all obvious but we will
use it without proof in our discussion although it can be proved for the geometrical approximation
of waves 6. Furthermore, the reader may have wondered what would happen if we used another
spacelike slice that is not t = constant, but some other form. Surely, the wavemode would appear
deformed in this choice of slice because the distance between AB will not remain the same. Does
that suggest that we would have particle creation even in flat space-time? It can be proved that,
although the wavemodes can get deformed even in flat spacetime by an unconventional but still
valid choice of spacelike slices, the deformation can not get big enough for particle creation .

4.5 Slicing the Black Hole Geometry

Since we have seen the way a wavemode evolves at a later spacelike slice, we must now choose
how to slice the Black Hole geometry, so that we cover both the outside and inside regions of the
horizon. Lets consider the Schwarzschild metric :

ds2 = −
(

1− 2GM
c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1
dr2 + r2dΩ2

There are three important regions we must take into account in constructing the spacelike slice :

• In the r > 2GM
c2 region, lets say r = 3GM

c2 we take the spacelike surface t = constant

. ( t Schwarzschild coordinate). This part of the spacelike slice is similar to the one in
Minkowski Spacetime, since as r gets bigger and bigger the Schwarzschild metric approaches
the Minkowski metric asymptotically. We call this part of the spacelike slice Sout .

• Inside the Horizon r < 2GM
c2 , the light cones tip sides or as it is usually referred space

and time interchange roles i.e the t = constant slice becomes timelike and the r = constant

becomes spacelike. Because we want our slice to be spacelike we use a r = constant slice .
We take the slice to be at r = GM

c2 which far from the horizon at r = 2GM
c2 and from the

singularity r = 0 . The reason we want it to be far from the singularity is because we want
to avoid regions with very big curvature, so that quantum gravity corrections do not become
very big. We name this part of the spacelike slice as Sin .

6Remember we are looking only for a qualitative picture of how wavemodes get deformed ,which in turn leads to
particle creation
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• The only part that remains is the part from r = GM
c2 to r = 3GM

c2 that crosses the horizon
at r = 2GM

c2 . We connect this part with a spacelike surface called Scon . The Schwarzschild
coordinates blow up in the horizon so in order to depict the connector we will use another time
coordinate τ that for large r we let τ → t . The fact that such a spacelike connector exists,
although not explicitly proved here , can be understood if we draw it in another coordinate
system like a Penrose diagram and then transform it to Schwarzschild coordinates.

The Spacelike slice in the r − τ plane is shown below :

Figure 4.5.1: Spacelike slice depicted in the r − τ plane

Finally we have to determine how to evolve our slice at later “times” . Generally this is arbitrary
as long as the slice remains spacelike and does not cross the singularity r = 0 . These two conditions
can be easily fulfilled by advancing the Sout part of the slice to a later time t + ∆ and the Sin

part to a smaller r so that it never reaches the singularity r = 0 . The evolution of each slice can
be also depicted in the Penrose Diagram below :
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Figure 4.5.2: The evolution of a spacelike slice in Penrose Diagram

We see that the outer part Sout approaches the future null infinity without the Sin part getting
close to the singularity , but at the same time the whole slice remains spacelike everywhere.

4.6 Evolution of Wavemodes in Black Hole Slicing - Particle
Creation

We have so far described the way a wavemode evolves in each spacelike slice 7 , and also the exact
form of the slices in Black Hole Geometry and how they evolve at later times 8. We will now
combine the two, and see how the initial “vacuum” mode gets distorted near the horizon, which
in turn leads to particle creation. In the following figure we depict the evolution of the initial
wavemode in two later slices for the Black Hole Geometry :

7See section : How Wavemodes move in Spacetime
8See section : Slicing the Black Hole Geometry
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Figure 4.6.1: Stretching of Wavemodes in Black Hole Slicing

The lines of constant phase are also drown in the diagram , which as we have discussed before
are radial null geodesics. So we can draw the wavemode in the next slice as seen above. We notice
that the wavemode gets deformed. This is because null geodesics inside and outside the horizon
“peel off” as time goes on. The ones just inside the horizon evolve towards smaller r , whereas the
ones just outside eventually approach r =∞ .

The evolution of the modes in the r − τ diagram can provide us with some information, at
least qualitatively, about the stretching of the modes. Although these observations can be proved
mathematically we will not present the proofs here [6]. By looking at the diagram we observe that:

• Only modes very close to the horizon get stretched enough so that we have particle creation
in the Sout , Sin areas of the spacelike slice.

• Modes with longer wavelengths get distorted first. Practically the higher the frequency of the
wavemode the longer the mode must evolve so that there is enough stretching for particle
creation.
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4.7 State of the System

We have derived previously that the vacuum state |0a〉 can be written as :

|0a〉 = Ce
− 1

2

∑
m,n

b†mγmnb†n
|0b〉

In our case we can break the creation operators b†k into those on Sout which we call b†k , and those
on Sin which we call c†k . The state turns out to be (without proof) :

|0a〉 = Ce

∑
k

γb†kc†k
|0b〉 |0c〉

If we consider the state of the system for two wavemodes :

|Ψk1〉 = Ce
γb†k1

c†k1 |0k1〉 |0k1〉 and |Ψk2〉 = Ce
γb†k2

c†k2 |0k2〉 |0k2〉

The operator b†k1
creates a quantum of momentum k1 in the region Sout , and the operator

c†k1
creates a quantum of momentum k1 in the region Sin . Similarly for the operators b†k2

, c†k2
.
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Figure 4.7.1: Pairs of Particles created from two wavemodes near the Black Hole Horizon

In the above figure we assume that λ2 < λ1 . Since the two wavemodes have different wave-
lengths, they take different times to get the same distortion and create the pairs b , c shown in
the figure. So the particles do not overlap in the same spacelike slice (the corresponding operators
commute) and the complete state can be written as the tensor product :

|Ψ〉 = |Ψk1〉 ⊗ |Ψk2〉 ⊗ |Ψk3〉 ⊗ . . . ∀ k ⊆ R

If we expand the exponential of the |Ψk1〉 we get 9 :

|Ψk1〉 = C

(
|0b,k1〉 ⊗ |0c,k1〉+ γ b†k1

|0b,k1〉 ⊗ c†k1
|0c,k1〉+ γ2

2! b†k1
b†k1
|0b,k1〉 ⊗ c†k1

c†k1
|0c,k1〉+ . . .

)
⇒

|Ψk1〉 = C
(
|0b,k1〉 ⊗ |0c,k1〉+ γ |1b,k1〉 ⊗ |1c,k1〉+ γ2 |2b,k1〉 ⊗ |2c,k1〉+ . . .

)
9We will use the relation:

(
b†k1

)n ∣∣0b,k1

〉
= n!

∣∣nb,k1

〉
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We notice from the above expression that the outgoing b quanta and the ingoing c quanta are
always created in pairs.

4.8 Mixed State of the Hawking Radiation

We will now proceed to find out whether the outgoing quanta b , are in a mixed or in a pure state.
We saw in the previous section that the state of the whole system is:

|Ψ〉 = |Ψk1〉 ⊗ |Ψk2〉 ⊗ |Ψk3〉 ⊗ . . . ∀ k ⊆ R

We will first just consider the state of one wavemode |Ψk1〉 and then with the help of the properties
of Von Neumann entropy 10 we will be able to generalize for the whole state |Ψ〉 . The state of one
wavemode |Ψk1〉 , which we will call in short |Ψ1〉 is :

|Ψ1〉 = C
(
|0b1〉 ⊗ |0c1〉+ γ |1b1〉 ⊗ |1c1〉+ γ2 |2b1〉 ⊗ |2c1〉+ . . .

)
The normalization C is given by the formula 11 :

C2
∞∑
n=0

γ2n = 1 ⇒ C2 = 1
∞∑
n=0

γ2n

The quanta c1 lie in the region inside the horizon and the b1 just outside the horizon, which
escape as Hawking Radiation. From the state |Ψ1〉 we see that the state of the b quanta are
entangled with the state of the c quanta. Since we are interested in the state of the Hawking
Radiation ( e.g the b quanta ) we have the familiar case12 of finding the reduced density matrix of
a system which is entangled. It probably has become obvious at this point that the state of the b

quanta will turn out to be mixed. But in order to prove this we must first find the reduced density
matrix for the b quanta.

4.8.1 Reduced Density Matrix- Entropy of the b Quanta

The density matrix for the state |Ψ1〉 is :

ρ1 = |Ψ1〉 〈Ψ1| ⇒

10See chapter 3: Entropy of the Product of two states
11It is important to mention that γ turns out to be less than 1, so that every series converses
12See Chapter 2 : Mixed States from Pure States- Reduced Density Matrix
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ρ1 = C2 (|0b1〉 ⊗ |0c1〉+ γ |1b1〉 ⊗ |1c1〉+ . . .) (〈0b1 | ⊗ 〈0c1 |+ γ 〈1b1 | ⊗ 〈1c1 |+ . . .)

From the above density matrix we can easily find the reduced density matrix for the b quanta, by
tracing over the basis of the c quanta { |0c1〉 , |1c1〉 , |2c1〉 , . . .} = {|nc1〉 , with n = 0, 1, 2, 3, . . .} :

ρb = Trc (ρ1) =
∑
n

〈nc1 | ρ1 |nc1〉 ⇒

ρb1 = C2 (|0b1〉 〈0b1 |+ γ2 |1b1〉 〈1b1 |+ γ4 |2b1〉 〈2b1 |+ . . .
)
⇒

ρb1 = C2
∞∑
n=0

(
γ2n |nb1〉 〈nb1 |

)
, with C2 = 1

∞∑
n=0

γ2n

We can also write the reduced density matrix in matrix form, in the basis : { |0b1〉 , |1b1〉 , |2b1〉 , . . .} =
{|jb1〉 , with j = 0, 1, 2, 3, . . .} :

ρb1 = C2



1 0 0 · · · 0

0 γ2 0
... 0

0 0 γ4 0
...

... · · · 0
. . . 0

0 0 · · · 0 γ2n


We see that the matrix ρb1 is diagonal , and has eigenvalues

{
C2, C2γ2, C2γ4, . . . . . . , C2γ2n }.

Now, in order to determine whether this is a pure or a mixed state we will calculate the entropy
Sρb1 :

Sρb1 = −
∑
i

λilog (λi) = −
∞∑
n=0

C2γ2nlog
(
C2γ2n) =

= −
(
C2log

(
C2)+ C2γ2log

(
C2γ2)+ C2γ4log

(
C2γ4)+ . . . . . .

)
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Although the whole series above may seem difficult to calculate exactly 13 we can easily prove that
Sρb1 is greater than zero. In order to prove that we only have to notice that:

C2γ2n = γ2n

∞∑
n=0

γ2n
< 1 ∀ n ⊆ N

I we take the logarithm of the above inequality we find :

log
(
C2γ2n) < 0 ⇒

−C2γ2nlog
(
C2γ2n) > 0 ⇒

∞∑
n=0

(
−C2γ2nlog

(
C2γ2n)) > 0 ⇒

Sρb1 > 0

So far we have proved what we anticipated , that the system of b quanta at least for one wavemode,
is mixed . What remains to be done now, is just to prove that state of b quanta for all wavemodes
is mixed.

4.8.2 Entropy of the Whole System

We have found the entropy of the b quanta for the wavemode k1 but we are interested in the
entropy of all the hawking radiation which consists of wavemodes of all k . The state of the whole
system as we have mentioned before is the tensor product of the states of all wavemodes :

|Ψ〉 = |Ψk1〉 ⊗ |Ψk2〉 ⊗ |Ψk3〉 ⊗ . . . ∀ k ⊆ R

We have explicitly discussed in chapter 3 14 that the reduced reduced density matrix of the whole
system for the b quanta is :

ρb = ρb1 ⊗ ρb2 ⊗ ρb3 ⊗ ρb4 ⊗ . . . . . .

Using the property of subadditivity of the Von Neumann entropy we have that :

Sρb = Sρb1 + Sρb2 + Sρb3 + · · · > 0
13γ must be less than one so that the series converges
14See chapter 3 : Entropy of the Product of two States
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since Sρb1 ,Sρb2 ,Sρb1 , · · · > 0
We have come to the conclusion that the state of all the b quanta that escape as Hawking

Radiation , are in a mixed state since the entropy is larger than zero. This may at first glance not
appear as a problem because the system of the b quanta is entangled with the system of c quanta.
But as the b quanta are emitted to infinity the Black Hole slowly loses mass and eventually
disappears, 15 so there are no c quanta that they are entangled with. All that remains is the
Hawking Radiation which we just proved cannot be described by a pure state. It seems therefore
that there is an inherent violation of unitarity in Black Hole evaporation, since a pure state evolves
into a mixed state. Hawking [7] claimed that we must describe quantum mechanics through density
matrices rather than pure states when we take gravity into account, since in any quantum gravity
situation there is the possibility of virtual black holes popping in and out of existence from quantum
vacuum fluctuations. This was a very radical and unsatisfying idea for someone who believed that
unitarity was a fundamental postulate of Quantum Mechanics.

15There are theories however that suggest that Black Holes do not disappear completely, but exist as a “remnant”.



Chapter 5

The Black Hole Information
Paradox

Paradoxes have always been the seeds for great paradigm shifts in the history of physics. There are
generally two kinds of Paradoxes in physical theories.

The first kind of paradoxes arise when existing physical theories in certain extreme conditions
give infinities that cannot possibly describe reality. I say possibly because one should not really
predestine how nature comes out to be , but it is generally believed that infinities are strong
indications of an incomplete physical theory. There are many examples of “Infinity” Paradoxes
found in the History of physics. The infinite self energy of the electron is such an example, or
the space- time singularities predicted by Einstein’s General Theory of Relativity. Of course one
of the most important ones was the ultraviolet catastrophe, which was a prediction of classical
physics, that an ideal black body at thermal equilibrium will emit radiation with infinite power.
Some of the infinity paradoxes like the ultraviolet catastrophe have lead to great revolutions in our
understanding of nature ( Quantum Mechanics ), and some others remain unsolved even today.

The second kind of paradoxes arise when two or more principles of physics are inconsistent with
each other. A deep belief among physicists is that there is an underlying consistent physical theory
that describes nature. So any principles which are inconsistent with each other must be modified
or replaced. An example of an “inconsistency” paradox is the conflict that appeared between
the Principle of Relativity, the Galilean transformations of space and time and Maxwell’s theory
of Electromagnetism. Something had to be modified and in this case (as it is very well known)
the Galilean transformations were replaced by Lorentz transformations. In the same way we can
formulate the evaporation process of a Black Hole as a case where known principles of physics are
inconsistent of each other. In this regard, we call this apparent conflict, as the Information Paradox.

74
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5.1 Unitarity and the Equivalence Principle : Two conflict-
ing Principles

In the previous chapter we saw that the Hawking Radiation of an evaporated Black Hole is in
a mixed sate, which violates the Unitarity Principle of Quantum Mechanics. One could claim
that this by itself is a paradoxical result since we derived the non unitary evolution of Black Hole
evaporation by using Quantum field theory, which by itself is unitary. We will see that even if the
Hawking Radiation was in a pure state there would still be a violation of unitarity. In this sense,
there is really a paradox since both possible outcomes of the Black Hole evaporation (information
loss or not) creates a conflict between known principles of physics. We will analyze the problem
more extensively below :

Consider the formation and complete evaporation of a black hole by a spherical shell of collapsing
mass M . The black hole radiates away slowly and finally evaporates completely. We assume also
that the initial state of the collapsing mass is in the pure state |φ〉 . We present the Penrose diagram
for the formation an evaporation of the Black Hole below 1 :

Figure 5.1.1: Penrose Diagram for Evaporating Black Hole

There are two postulates we will assume :

1For more about Penrose diagrams for evaporating black holes see: (http : //golem.ph.utexas.edu/ distler/blog/archives/001994.html)
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• The first postulate is the assumption that the formation and evaporation of a black hole is
described by a unitary S matrix, much like ordinary scattering in Quantum Field Theory. We
deduce therefore that the state of the Hawking Radiation after the black hole has evaporated
completely is still in the state |φ〉 , if we use the Heisenberg Picture. The Hawking Radiation
is depicted below :

Figure 5.1.2: Penrose Diagram with Hawking Radiation

• The second postulate is the Equivalence Principle which is embedded in the General theory
of Relativity. According to the equivalence principle, for scales significantly smaller than the
radius of the Black Hole the horizon can be approximated by ordinary flat space. So the
in-falling matter does not experience anything unusual as it crosses the horizon. This means
then that the state |φ〉 is intact at a region inside the horizon as shown below :
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Figure 5.1.3: Spacelike Slice that contains both states |φ〉

Here is the problem. If both postulates are true, then we can construct2 a spacelike slice (blue
line in the above figure) that contains both the sate of the in-falling matter and the state of the
Hawking Radiation. The no cloning theorem3 states that the process of unitary evolution cannot
faithfully replicate quantum information in two separate sets of commuting degrees of freedom. If
the infalling state is completely recorded inside the horizon (as the Equivalence Principle predicts)
then it cannot be simultaneously found in the Hawking Radiation and vice verse.

As a conclusion we can sum up the Information Paradox in the following matrix:

Black Hole Evaporation −→

 Information IS conserved : Violation of No-Cloning Theorem-Unitarity

Information is NOT conserved : Violation of Unitarity



2For an explicit construction of such slice in kruskal coordinates see section 2 of [8]
3See chapter 3: No Cloning Theorem
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5.2 Black Hole Complementarity Principle

We have shown a serious conflict between two very well established principles of physics. From the
perspective of the distant observer whatever gets thrown into the black hole gets thermalized near
the horizon and eventually comes out through the hawking radiation, since the whole process can
be described by an ordinary unitary S matrix. From the point of view of the in-falling observer
however nothing special happens near the horizon and all the information is able to pass inside
absolutely intact and in finite proper time. Both points of view suggest that there is a violation of
the no- cloning theorem of Quantum Mechanics. How could both versions be true?

A close analogy to the above problem is the wave - particle duality problem that physicists
encountered in the early 1900’s . It was observed that particles appeared to have wave- like prop-
erties in some cases, and waves like the electromagnetic wave had particle like properties in some
other cases (photoelectric phenomenon). This was very confusing since particle and waves seemed
to be contradictory notions with each other. How could something be both ? Bohr’s response to
the problem was the very well known complementarity principle, which stated that neither waves
nor particles are complete descriptions of reality, but that they are complementary to each other.
Depending on what you want to measure in a specific experiment , different aspects will appear in
different circumstances. Sometimes an experiment will unveil the wave characteristics while other
experiments the particle characteristics, but never both at the same time. Since no experiment will
produce contradictory results there is really no paradox.

In the same manner Leonard Susskind, Larus Thorlacius and John Uglum [9] proposed the
Black Hole Complementarity Principle. In order for both stories of the distant and the in-falling
observer to be true there should be a principle preventing these two observers communicating with
each other. In other words cloning is fictitious since there is no way an observer can confirm that
it happened. Every description of a single observer is consistent with unitarity and the equivalence
principle. The problem appears when we try to describe reality in a global way , but if we restrict
ourselves to one observer everything is consistent with the known principles of physics and no
contradiction arises. There are many strategies one could imagine in order to show that the Black
Hole Complementarity principle is violated, much like there were many experiments designed to
disprove the uncertainty principle of Quantum Mechanics. We will consider only one such thought
experiment and see that Black Hole complementarity is not violated.

5.2.1 Test of the B.H Complementarity Principle

We will now consider a certain strategy two observers can follow in order for one of them two observe
the two clones of some quantum mechanical system in state |φ〉 . If such strategy is physically
possible then it is obvious that the complementarity principle is violated. Imagine two observers
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Alice (A) and Bob (B) . Alice prepares a quantum system in state |φ〉 and then falls into the
Black Hole Horizon carrying the system with her. Both Alice and Bob have conspired to implement
the following strategy : Bob will stay outside the black hole horizon as a Schwarzschild observer
for Schwarzschild time ∆t . The time that Bob stays outside the horizon should be enough so that
he can retrieve the state |φ〉 from the Hawking Radiation. After he has retrieved the state |φ〉 he
falls into the horizon. Alice on the other hand sends a signal from inside the horizon transmitting
the state, so that Bob receives the signal just as he crosses the horizon and before hitting the
singularity. In this way Bob will have both the state |φ〉 from the Hawking Radiation and the
state |φ〉 that Alice send, verifying that cloning has occurred. We have now to determine whether
such strategy is physically possible, because if it is, there would be a clear violation of unitarity and
the complementarity principle. We must warn the reader that for detailed Gedanken experiments
involving Black Hole Complementarity he should refer to [10]. We are more interested at the general
idea of how B.H Complementarity works at this point.

It is convenient to use Kruskal coordinates since we wish to describe both the inside and the
outside of the Black Hole Horizon. The metric in Schwarzschild coordinates is 4:

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2

The transformation relations to Kruskal coordinates (U, V ) is :

U = −e
(r?−t)

4M V = −e
(r?+t)

4M

where r? = r + 2M log
∣∣ r

2M − 1
∣∣ . The Schwarzschild line element then becomes5 :

ds2 = 32M3

r
e−

r
2M dUdV

The metric in Kruskal coordinates is presented below :

4c = G = ~ = 1
5We take dΩ = 0
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Figure 5.2.1: Alice (A) and Bob (B) in Kruskal coordinates

The singularity is represented by the hyperbola UV = 1 and the horizon by the line U = 0 .
From the diagram it is easy to see that the more time Bob waits outside the Black Hole horizon
the smaller the value U becomes when he runs into the singularity. The smaller the U is , the less
proper time Alice has in order to send a message that can reach Bob before hitting the singularity.
This is expressed by the relation 6 :

τ ∼ Re(−
∆t
R ) (5.2.1)

where τ is the proper time Alice has before Bob is out of reach. ∆t is the Schwarzschild time Bob
waits outside the horizon before falling in. R is the Schwarzschild radius (R = 2M).

In 1993 there was a paper published by Don Page [11] which showed that the Schwarzschwild
time ∆t necessary for Bob to reconstruct |φ〉 out of the Hawking radiation is of order :

∆t ∼ M3 (5.2.2)

From eq. (5.2.1) , (5.2.2) we see that :

τ ∼ Re
(
−M3

R

)

6Almost all relations will be presented without formal proof
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and since R = 2M :

τ ∼Me(−M
2)

From the uncertainty principle of energy and time we have that the energy of the signal Alice has
to send is of order :

Esignal · τ ∼ 1 ⇒ Esignal ∼
1
τ
⇒ Esignal ∼

1
M
eM

2

Will will now show that the energy of the signal Alice has to send is bigger than the energy of the
Black Hole :

EBH = M

Esignal ∼ 1
M eM

2

∣∣∣∣∣∣∣
Esignal
EBH

= eM
2

M2 > 1 ∀M

So we see that if Alice wants to communicate to Bob , she must send such a high- energy
pulse that would disturb the Black Hole geometry immensely. It is obvious then, that Bob cannot
physically receive both clones before falling into the singularity. Black Hole Complementarity is
therefore NOT violated.
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5.3 Conclusion

For over 35 years the Paradox that Hawking discovered has not even come close to being resolved.
It is very hard to find a mechanism in which information can escape from a black hole , and still be
consistent with the semi-classical approximation that Hawking used. In fact if Quantum Gravity
effects are needed to explain what is happening, then we could be very far from finding a complete
solution. It is very confusing how or why quantum gravity effects can have such a big impact in
the regions of energy and curvature that the calculations were made. Nevertheless, it seems that
there are a lot more ideas and paradigm shifts that can emerge from the problem.
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