
Some Aspects of Large-N Vector Models and their
Higher-Spin Holography

Anastasios C. Petkou

Institute of Theoretical Physics
Aristotle University of Thessaloniki

Research co-financed by Greek national funds through the Operational Program ”Education and Lifelong Learning”

of the National Strategic Reference Framework (NSRF), under the grants scheme ”ARISTEIA II”.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 1 / 54



Outline

1 Motivations

2 O(N) vector models: review
O(N)→ O(N − 1) symmetry breaking in the bosonic model
The fermionic O(N) vector model: lightning review
Anomalous dimensions

3 O(N)/HS holography
The gap equations from holography
The singleton deformation of higher-spin theory and boundary symmetry
breaking

4 Aspects of the OPE in O(N) vector models
The conformal partial waves: free field theory
The skeleton graphs

5 Summary and outlook

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 2 / 54



Outline

1 Motivations

2 O(N) vector models: review
O(N)→ O(N − 1) symmetry breaking in the bosonic model
The fermionic O(N) vector model: lightning review
Anomalous dimensions

3 O(N)/HS holography
The gap equations from holography
The singleton deformation of higher-spin theory and boundary symmetry
breaking

4 Aspects of the OPE in O(N) vector models
The conformal partial waves: free field theory
The skeleton graphs

5 Summary and outlook

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 2 / 54



Outline

1 Motivations

2 O(N) vector models: review
O(N)→ O(N − 1) symmetry breaking in the bosonic model
The fermionic O(N) vector model: lightning review
Anomalous dimensions

3 O(N)/HS holography
The gap equations from holography
The singleton deformation of higher-spin theory and boundary symmetry
breaking

4 Aspects of the OPE in O(N) vector models
The conformal partial waves: free field theory
The skeleton graphs

5 Summary and outlook

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 2 / 54



Outline

1 Motivations

2 O(N) vector models: review
O(N)→ O(N − 1) symmetry breaking in the bosonic model
The fermionic O(N) vector model: lightning review
Anomalous dimensions

3 O(N)/HS holography
The gap equations from holography
The singleton deformation of higher-spin theory and boundary symmetry
breaking

4 Aspects of the OPE in O(N) vector models
The conformal partial waves: free field theory
The skeleton graphs

5 Summary and outlook

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 2 / 54



Outline

1 Motivations

2 O(N) vector models: review
O(N)→ O(N − 1) symmetry breaking in the bosonic model
The fermionic O(N) vector model: lightning review
Anomalous dimensions

3 O(N)/HS holography
The gap equations from holography
The singleton deformation of higher-spin theory and boundary symmetry
breaking

4 Aspects of the OPE in O(N) vector models
The conformal partial waves: free field theory
The skeleton graphs

5 Summary and outlook

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 2 / 54



Motivations

1. Test Holography and AdS/CFT beyond string theory.

The O(N) vector model: O(1/N) anomalous dimensions of the O(N)-singlet
higher-spin currents are [W. Rühl - private communication ]:

J(s) ∼ φa∂{µ1
....∂µs}φ

a , a = 1, 2, .., N

∆s = s+ 1 + 4γφ
s− 2

2s− 1
+ · · · , s = 2k , k = 1, 2, .. , γφ ∼ O(1/N)

s→∞ , ∆s − s ≈ 2

(
1

2
+ γφ

)
All determined by γφ: → contrast with N = 4 SYM. No ln s growth that
would signal the presence of gauge fields. Hard to arise from rotating strings
in AdS. However, fast rotating ultrashort strings (particles?) in
an AdS4 black hole yield the T -independent result [Armoni, Barbon and A.C.P. (02)]

s→∞ , ∆− s ≈ 1

4
√

2

√
λ+ · · ·

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 3 / 54



Motivations

1. Test Holography and AdS/CFT beyond string theory.

The O(N) vector model: O(1/N) anomalous dimensions of the O(N)-singlet
higher-spin currents are [W. Rühl - private communication ]:
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Motivations

The conjectures

The O(N) singlet sector of the bosonic vector model is dual to the simplest
Vasiliev theory of AdS4 [Klebanov and Polyakov (02)].
An analogous conjecture for the O(N) fermionic vector model - slightly
complicated due to parity issues - [Leigh and A. C. P. , Sezgin and Sundell (03)]

The bosonic conjecture has been tested up to 3-pt couplings. [e.g. Giombi and Yin

(09)].
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Motivations

2. Compare the bulk and boundary OPE studies: understand how the bulk
”emerges” from the boundary and vice versa.

Diagrammatic 1/N ”skeleton” expansion elucidates the OPE structure of the
boundary theories and gives interesting results.
However, extension of such techniques to the bulk is rather mysterious.

Further questions (still impenetrable in d ≥ 3)

3. Thermalisation of 3d vector models is well understood. The bosonic model
realises the Mermin-Wagner theorem: O(N) symmetry does not break for T > 0.
Parity does break for T > 0.
How is this realised in terms of HSs?
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Motivations

In this talk:

Vector models exhibit global and discrete symmetry breaking. The bosonic model
O(N)→ O(N − 1). The fermionic model parity breaking.
If there is holography without strings and branes, what is the bulk counterpart of
the global O(N) boundary symmetry and its breaking pattern?

1. Emphasise the role of singletons for vector model holography:

Using a bulk singleton deformation I will reproduce the boundary gap
equation that describes the O(N)→ O(N − 1) breaking.
Using a further boundary deformation I will reproduce the known O(1/N)
anomalous dimension of the elementary scalars in the boundary. The latter
result raises the issue whether O(N) symmetry breaking is related to
higher-spin symmetry breaking.

I will discuss the singleton deformation in the fermionic model.
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Motivations

2. Discuss the OPE techniques in the vector models:

I will review sketch the calculations of couplings, anomalous dimensions and
”central charges” in the bosonic and fermionic vector models.

I will discuss sketch mention the problems extending such techniques to the
bulk.
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O(N) vector models: review

N -elementary (Euclidean) scalar fields φa(x) subject to a constaint

L =
1

2

∫
d3x ∂µφ

a∂µφ
a , φaφa =

N

g
, a = 1, 2, ..N .

g → 0 is the free field theory limit which lies in the UV.

Introduce a Lagrange multiplier ρ and integrate the φ’s to obtain

Z =

∫
(Dρ)e−NSeff (ρ) , Seff (ρ) =

1

2
Tr ln(−∂2 + ρ)−

∫
d3x

ρ

2g

The saddle point at large-N , with constant ρ0 = m2, yields the
gap equation

∂Seff (ρ)

∂ρ

∣∣∣
ρ0

= 0⇒ 1

g
=

∫
d3p

(2π)3

1

p2 + ρ0

The large-N expansion is obtained setting

ρ(x) = ρ0 +
1√
N
σ(x) ,
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O(N) vector models: review

The effective action SNeff (σ, ρ0) for the real fluctuations σ is

Seff (ρ) =
1

2
Tr ln(−∂2 + ρ0)− ρ0

2g
(V ol)3 +

1

N
SNeff (σ, ρ0)

SNeff (σ, ρ0) =
1

2

∫
σ(x)∆3(x, y; ρ0)σ(y)

+
1

3!
√
N

∫
σ(x)σ(y)σ(z)P3(x, y, z; ρ0) + ..

The kernels ∆2(x, y; ρ0) , P3(x, y, z; ρ0) .. are constructed using propagators
of the φ’s only.

The generating functional W [η] for connected correlation functions of σ is

eW [η] ≡
∫

(Dσ)e−S
N
eff (σ,ρ0)+

∫
ησ
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O(N) vector models: review

Using a UV cutoff Λ the gap equation becomes(
1

g∗
− 1

g

)
=

√
|ρ0|

4π
+O(ρ0/Λ) ,

1

g∗
=

Λ

2π2

For g > g∗, we are in the massive phase with m =
√
|ρ0| 6= 0.

For g = g∗ there is no mass scale left and we describe the critical O(N)
vector model.
For g < g∗, ρ0 = 0 but an arbitrary mass scale remains - the subtraction
point of renormalisation - and we enter a symmetry broken phase.

The O(N) symmetry is broken once we depart from the free theory, and it restored
at the nontrivial fixed point.
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O(N) vector models: review

A clearer way to see the O(N) → O(N − 1) symmetry breaking pattern is to
separate out the N ’th component of φa’s, which we denote as φ.

Integrating over the remaining N − 1 elementary scalars we obtain

Z =

∫
[Dφ][Dρ] e−(N−1)Seff (ρ,φ)

The effective action is now defined as

Seff (φ, ρ) = SN−1
eff (ρ) +

1

2(N − 1)

∫
d3xφ(−∂2 + ρ)φ

SN−1
eff (ρ) =

1

2
Tr ln(−∂2 + ρ)− N

(N − 1)

∫
d3x

ρ

2g

Apart from the different N scaling of the coupling constant g:

the effective action SN−1
eff (ρ) is essentially the same as Seff (ρ).
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O(N) vector models: review

The large-N expansion is now performed as

ρ(x) = ρ0 +
1√
N − 1

σ(x) , φ(x) = φ0 + ϕ(x) .

with ρ0, φ0 determined by the

modified gap equations

∂Seff
∂ρ

∣∣∣
(φ0,ρ0)

= 0 ⇒ φ2
0

N − 1
=

N

(N − 1)

1

g
−
∫

d3p

(2π)3

1

p2 + ρ0

∂Seff
∂φ

∣∣∣
(φ0,ρ0)

= 0 ⇒ ρ0φ0 = 0
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O(N) vector models: review

The resulting effective action is then written as

Seff (φ, ρ) = Veff (φ0, ρ0) +
1

N − 1
SN−1
eff (ϕ, σ)

SN−1
eff (ϕ, σ) = SN−1

eff (σ, ρ0) +
1

2

∫
ϕ(x)D0(x, y; ρ0)ϕ(y)

+
1

2
√
N − 1

∫
σ(x)ϕ2(x) +

φ0√
N − 1

∫
σ(x)ϕ(x)

O(N)→ O(N − 1) symmetry breaking pattern

The effective action for the O(N) model ← the effective action of the
O(N − 1) model by integrating-in ϕ with a

∫
σϕ2 and a

∫
ϕσ interaction.

At the critical point ρ0 = φ0 = 0, one integrates-in a massless elementary
scalar ϕ(x) with marginal interaction. This shifts N − 1→ N .
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O(N) vector models: review

The modified gap equation is written

φ2
0

N − 1
=

(
N

N − 1

1

g
− 1

g∗

)
+
|m|
4π

+ · · ·

φ0 and |m| cannot be simultaneously nonzero and |m| < Λ.

When g < Ng∗/(N − 1), |m| = 0 but φ0 6= 0 ⇒ O(N) is broken to
O(N − 1). The N − 1 Goldstone bosons are the massless elementary scalars
that were integrated out.

When the coupling is tuned to

g =
N

N − 1
g∗ > g∗

we have φ0 = m = 0 and we arrive at the critical O(N) vector model.

As the coupling increases to g > Ng∗/(N − 1), we have φ0 = 0, but then we
enter the O(N) symmetric phase with

m =
2Λ

π

(
1− N

N − 1

g∗
g

)
,
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g

g⇤

0

N

N � 1
g⇤

N + 1

N
g⇤

N + 2

N + 1
g⇤

N � 1 N + 1N

+ ' + '

Figure : The phase diagram of the vector models. Stars denote the CFTs. The solid
arrows denote marginal deformations towards the IR fixed point after the absorption of
an elementary scalar ϕ. The dotted arrows denote irrelevant double-trace deformations
leading to the UV fixed point of the symmetry enhanced theory.
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O(N) vector models: review

When g < Ng∗/(N − 1) we assign the difference

N

N − 1

1

g
− 1

g∗
=

φ2
0

N − 1
6= 0

to an expectation value of φ0. Then the linear interaction term φ0

∫
σϕ is

nontrivial and we can shift the scalar fluctuation as

ϕ = ϕ̂+
φ0√
N − 1

1

−∂2
σ ,

Z ∼
∫
e
−
[
SN−1
eff (σ,0)+ 1

2

∫
ϕ̂D0ϕ̂+ 1

2
√
N−1

∫
σϕ̂2− φ2

0
2(N−1)

∫
1
−∂2 σ

2+..

]
.

The last term in the exponent is a nonlocal version of the irrelevant
double-trace deformation

∫
σ2 which drives the theory in the UV where we

expect to find the free O(N) model.

A richer picture arises in d = 5 which can be compared to the recent
results of [Giombi, Klebanov et. al. (14)].
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O(N) vector models: review

The Euclidean action for the three-dimensional Majorana fermions

S = −
∫
d3x

[
1

2
ψ̄i /∂ ψi +

G

4N
(ψ̄iψi)2

]
, ψ̄ = ψTσ2 , i = 1, 2, ..N.

G has dimensions of inverse mass, hence the G→ 0 free theory lies in the IR.

An expectation value for σ ∼ Gψ̄iψi signifies parity breaking.

With respect to a critical coupling

1

G∗
=

Λ

π2
,

we have 1) for G < G∗, σ = 0 and parity is unbroken, 2) for G = G∗ we are
at the fermionic critical O(N) fixed point that lies in the UV and 3) for
G > G∗, σ 6= 0 and hence parity is broken.

We can also show that the critical O(N) GN model arises from the critical
O(N − 1) GN model by integrating-in elementary fermions with a marginal
σψ̄ψ interaction.

Starting from G < G∗ an additional double-trace relevant coupling is induced
that drives the theory at its IR free fixed point.
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O(N) vector models: review

The systematic 1/N expansion leads to the calculation of anomalous
dimensions [e.g. A. Vasiliev et. al. (81-81), Gracey (91-92), Rühl et. al. (92-93), T. P.

(94-96)]. From conformal invariance we have

〈φa(x)φb(0)〉 =
Cφ
x2∆φ

δab , 〈σ(x)σ(0)〉 =
Cσ
x2∆σ

We fix d = 3 and define three critical indices γφ, κ and z of order O(1/N) as

∆φ =
1

2
+ γφ , ∆σ = 2− 2γφ − 2κ , C2

φCσ =
1

π4
+ z

The two-point function of φa is given by

〈φa(x)φb(0)〉 =
1

4π

1

|x|

[
1− 1

N

4

3π2
ln |x|2 + ...

]
δab ⇒ γφ =

4

3π2

1

N

For the calculations of κ and ζ one needs to consider the 2-pt function of σ
and also the renormalisation of the vertex σφ2. The most updated results are
already a few decades old.
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(94-96)]. From conformal invariance we have

〈φa(x)φb(0)〉 =
Cφ
x2∆φ

δab , 〈σ(x)σ(0)〉 =
Cσ
x2∆σ

We fix d = 3 and define three critical indices γφ, κ and z of order O(1/N) as

∆φ =
1

2
+ γφ , ∆σ = 2− 2γφ − 2κ , C2

φCσ =
1

π4
+ z

The two-point function of φa is given by

〈φa(x)φb(0)〉 =
1

4π

1

|x|

[
1− 1

N

4

3π2
ln |x|2 + ...

]
δab ⇒ γφ =

4

3π2

1

N

For the calculations of κ and ζ one needs to consider the 2-pt function of σ
and also the renormalisation of the vertex σφ2. The most updated results are
already a few decades old.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 20 / 54



Outline

1 Motivations

2 O(N) vector models: review
O(N)→ O(N − 1) symmetry breaking in the bosonic model
The fermionic O(N) vector model: lightning review
Anomalous dimensions

3 O(N)/HS holography
The gap equations from holography
The singleton deformation of higher-spin theory and boundary symmetry
breaking

4 Aspects of the OPE in O(N) vector models
The conformal partial waves: free field theory
The skeleton graphs

5 Summary and outlook

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 21 / 54



The HS/O(N) holography

Practically, O(N)/HS correspondence proceeds by considering the bulk action

IHS =

∞∑
s=0,2,4,..

∫
d4x
√−g 1

2
Φ(s)

[
�s −

1

L2
(s2 − 2s− 2)

]
Φ(s) +O(

1√
N

)

Φ(s) are symmetrized and double-traceless rank-s tensors, �s are generalized
Pauli-Fierz operators on the fixed AdS4 background metric gµν . There is also
a ”mass” term necessary to maintain HS gauge invariance.

The quadratic part of IHS yields the two-point functions of all free
higher-spin currents normalized to O(1). The free boundary theory is
obtained by the alternative quantisation (AQ) of the conformally coupled
scalar Φ(0). The standard quantisation (SQ) gives the non-trivial fixed point.
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O(N)/HS holography

AdS/CFT yields the renormalized boundary generating functional Wen[J ],
wherefrom we get the effective action Γ[〈O〉] by a Legenrde transform.

A Lagrangian deformation of the boundary field theory action by a functional
f(O) corresponds - at least at large-N - to a simple deformation of the
effective action

Γf [σ] = Γ0[σ] + f(σ) , σ = 〈O〉 .

Given such a deformation the boundary gap equation reads

δΓf [σ]

δσ

∣∣∣
σ=σ∗

= 0
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O(N)/HS holography

We extend the bulk theory by second scalar with m2L2 = −2

IextHS = IHS +

∫
d4x
√−g 1

2
Σ

[
� +

2

L2

]
Σ .

We take Φ(0) ≡ Φ in AQ, and Σ in SQ. Asymptotically, we have

Φ ∼ αz + βz2 , Σ ∼ ηz + σz2

Φ yields a ∆ = 1 operator with vev α, Σ yields a ∆ = 2 operator with vev σ.

We assume that these fields do not mix in the bulk. This means that the
regularity conditions of the bulk equations yield α = α(β) and σ = σ(η), and
determine the boundary generating functional as

IextHS →W [β, η] =

∫
α(β)β −

∫
σ(η)η .

the different relative signs arising due to the opposite quantizations used.
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O(N)/HS holography

To get the boundary gap equation we introduce boundary terms that couple
the two fields together i.e. a Lagrangian deformation of the form

f(α, σ) =

∫ (
ασ + V (σ)− 1

3
λ(α− h)3

)
, V (σ) = −λ

′

g
σ .

with λ and λ′ dimensionless and h is a parameter with dimensions of mass.

We then obtain

Γ[α, σ] =

∫ (
1

2
αK1α−

1

2
σK−1

1 σ + σ(α− λ′

g
)− 1

3
λ(α− h)3

)
where K1 is an appropriate kernel.

For constant α and σ, we obtain the gap equations

α =
λ′

g

σ = λ(α− h)2

The first equation corresponds to the model’s constraint and gives λ′ =
√
N .
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O(N)/HS holography

The second equation can be rewritten as

λ =
16π2

N
, h =

√
N

g∗
⇒
√
N

g
=

√
N

g∗
±
√
N

4π

√
σ

Keeping the minus sign, this coincides with the vector model’s gap equation.

The free UV fixed point is reached taking g, λ→ 0 and the cutoff to infinity,
whereby σ decouples and only α (the ∆ = 1 operator) survives.

The nontrivial IR fixed point arises when g → g∗. In this case, the
introduction of the operator α is equivalent to a finite shift of the operator σ
⇒ the operator α becomes redundant.

(α− h)3 corresponds to the classically marginal term (φaφa)3. h introduces
relevant terms in order that the non-trivial fixed point is properly described
and appears at a finite value of g.
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O(N)/HS holography

Next, we deform the higher-spin action by a singleton field S as

IdHS = IextHS +

∫
d4x
√−g 1

2
S

[
� +

5

4L2

]
S ,

with asymptotic behaviour

S ∼ ξz1/2 + φz5/2.

For S the only possible unitary quantization is to use AQ [e.g. Ohl and

Uhlemann (12)] giving a free boundary operator of ∆ = 1/2 that decouples
from the rest of the CFT.

To force S interact with the other HS’s we deform the bulk theory by

fd(α, σ, φ) =

∫ [
ασ − Ṽ (σ)− λ1

3
(α− h)

3
+ λ̃σφ2

]
, Ṽ (σ) =

λ̃′

g
σ ,

where λ′ → λ̃′ = N+1√
N

is required in order to absorb φ by suitably adjusting

the coupling 1/g in the massive phase of the theory.
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O(N)/HS holography

The gap equations are then

α+ λ̃φ2 =
N + 1√
N

1

g

σ =
16π2

N

(
α−
√
N

g∗

)2

λ̃φσ = 0 (1)

The third equation is familiar from the σ-model: there are two phases, one in
which φ = 0 (massive phase) and the other in which σ = 0 (broken phase).

The first equation has an O(N + 1)-invariant form if we interpret
α ∼ 〈φaφa〉 and φ ∼ 〈φN+1〉. Substituting then α we find

λ̃φ2 =
N + 1√
N

1

g
−
√
N

g∗
+

√
N

4π2

√
σ .

Setting λ̃ = 1/
√
N this coincides exactly with field theory gap equation.
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O(N)/HS holography

At the critical point α is redundant and the boundary term becomes

fd(σ, φ
2) =

1√
N

∫
σφ2 .

This is a simple marginal deformation of the extended higher-spin action and
leads to a 1/N expansion for the boundary two-point functions of φ and σ.
For example, we obtain

〈φ(x1)φ(x2)〉def = 〈φ(x1)φ(x2)〉0
+

1

2N

∫
〈φ(x1)φ(x2)σ(x)φ2(x)σ(y)φ2(y)〉0 + · · ·

where we have dropped the O(1/
√
N) term whose contribution vanishes, as

do all other fractional powers of 1/N .

The above is the same expansion as in the field theory analysis for φ, at least
to leading order in 1/N , and hence it gives the same anomalous dimension.
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O(N)/HS holography

This is despite the fact that the deformation may be regarded as a marginal
deformation of the IR O(N) fixed point in the presence of an additional
scalar φ.

Generally, the graphical expansion for φ and σ generated by the deformation
above is the same as the graphical expansion for φa and σ generated by the
boundary field theory → hence yields the same anomalous dimensions.

The moral

At least to leading order in 1/N , the bulk HS theory is deformed by throwing in
singletons → these simply are pushed in the boundary, hence we have N → N + 1.
We need, however, some nontrivial bulk interaction with the HSs in order to
induce the necessary boundary terms to glue the extra field to the rest.
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Aspects of the OPE in O(N) vector models

We will focus on the following 4-pt functions

〈φa(x1)φb(x2)φc(x3)φd(x4)〉 ≡ Φabcd(x1, x2, x3, x4)

= δabδcdΦS(x1, x2, x3, x4)

+ E [ab,cd]ΦA(x1, x2, x3, x4)

+ T (ab,cd)Φst(x1, x2, x3, x4)

〈φa(x1)φb(x2)O(x3)O(x4)〉 ≡ δabΦφO(x1, x2, x3, x4)

〈O(x1)O(x2)O(x3)O(x4)〉 ≡ ΦO(x1, x2, x3, x4)

These will be functions of v and Y related to the usual conformal ratios as

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

12x
2
34

x2
14x

2
23

, Y = 1− v

u

with v, Y → 0 as x2
12, x

2
34 → 0.
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〈φa(x1)φb(x2)O(x3)O(x4)〉 ≡ δabΦφO(x1, x2, x3, x4)

〈O(x1)O(x2)O(x3)O(x4)〉 ≡ ΦO(x1, x2, x3, x4)

These will be functions of v and Y related to the usual conformal ratios as

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

12x
2
34

x2
14x

2
23

, Y = 1− v

u

with v, Y → 0 as x2
12, x

2
34 → 0.
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Aspects of the OPE in O(N) vector models

We would need the following OPEs

φa(x1)φb(x2) =
∑
∆s

δab

(x2
12)∆φ− 1

2 ∆s

[
1 +

gφφOs
COs

[Os(x2)]

]
,

+
∑
∆′s

E [ab,cd]

(x2
12)∆φ− 1

2 ∆′s

g
φφO[cd]

s

CO[cd]
s

[O[cd]
s (x2)]

+
∑
∆′′s

T (ab,cd)

(x2
12)∆φ− 1

2 ∆′′s

g
φφO(cd)

s

CO(cd)
s

[O(cd)
s (x2)] , x12 = x1 − x2 ,

The [Os]’s represent the full contributions (i.e. including descendants).
The COs ’s are the 2-pt function normalisation constants and the gφφOs ’s are
the corresponding 3-pt function couplings. We normalized to one the 2-pt
function of the φa’s.
The above OPE represents a converging series in the limit x12 → 0 limit.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 34 / 54



Aspects of the OPE in O(N) vector models

We would need the following OPEs

φa(x1)φb(x2) =
∑
∆s

δab

(x2
12)∆φ− 1

2 ∆s

[
1 +

gφφOs
COs

[Os(x2)]

]
,

+
∑
∆′s

E [ab,cd]

(x2
12)∆φ− 1

2 ∆′s

g
φφO[cd]

s

CO[cd]
s

[O[cd]
s (x2)]

+
∑
∆′′s

T (ab,cd)

(x2
12)∆φ− 1

2 ∆′′s

g
φφO(cd)

s

CO(cd)
s

[O(cd)
s (x2)] , x12 = x1 − x2 ,

The [Os]’s represent the full contributions (i.e. including descendants).
The COs ’s are the 2-pt function normalisation constants and the gφφOs ’s are
the corresponding 3-pt function couplings. We normalized to one the 2-pt
function of the φa’s.
The above OPE represents a converging series in the limit x12 → 0 limit.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 34 / 54



Aspects of the OPE in O(N) vector models

We would need the following OPEs

φa(x1)φb(x2) =
∑
∆s

δab

(x2
12)∆φ− 1

2 ∆s

[
1 +

gφφOs
COs

[Os(x2)]

]
,

+
∑
∆′s

E [ab,cd]

(x2
12)∆φ− 1

2 ∆′s

g
φφO[cd]

s

CO[cd]
s

[O[cd]
s (x2)]

+
∑
∆′′s

T (ab,cd)

(x2
12)∆φ− 1

2 ∆′′s

g
φφO(cd)

s

CO(cd)
s

[O(cd)
s (x2)] , x12 = x1 − x2 ,

The [Os]’s represent the full contributions (i.e. including descendants).
The COs ’s are the 2-pt function normalisation constants and the gφφOs ’s are
the corresponding 3-pt function couplings. We normalized to one the 2-pt
function of the φa’s.
The above OPE represents a converging series in the limit x12 → 0 limit.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 34 / 54



Aspects of the OPE in O(N) vector models

We would also need

φa(x1)O(x2) =
1

(x2
12)

∆φ+∆

2

[
gφφO

(x2
12)−

∆φ
2

[φa(x2)] +
gφOF
CF

[F a(x2)]

(x2
12)−

∆F
2

+ ..

]

O(x1)O(x2) =
1

x2∆
12

[
CO +

gO
CO

[O(x2)]

(x2
12)−

∆
2

+
gOOT
CT

Cµν [Tµν(x2)]

(x2
12)−

d
2

+ ..

]
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Aspects of the OPE in O(N) vector models

Inserting the OPEs into the 4-pt function we obtain formulae like

Φ(v, Y ) =
∑
∆s

1

(x2
12x

2
34)∆φ

g2
φφOs
COs

H∆s
(v, Y )

with H∆s(v, Y ) the conformal partial wave (CPW) representing the
contribution of the operator Os and all its descendants into the 4-pt function.

The CPW’s are given is terms of a double series of the form

H∆s
(v, Y ) = v

1
2 (∆s−s)

∞∑
n,m=0

Anmv
nY m

This becomes particularly interesting when the operators are conserved spin-s
currents whose dimensions are
∆s = d−2+s. In this case we find that the leading singular term has the form

H∆s
(v, Y ) = A0sv

1
2d−1Y s[1 +O(v)] · · ·

The above behaviour can be used to detect the presence of higher-spin
conserved currents in a 4-pt function.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 36 / 54



Aspects of the OPE in O(N) vector models

Inserting the OPEs into the 4-pt function we obtain formulae like

Φ(v, Y ) =
∑
∆s

1

(x2
12x

2
34)∆φ

g2
φφOs
COs

H∆s
(v, Y )

with H∆s(v, Y ) the conformal partial wave (CPW) representing the
contribution of the operator Os and all its descendants into the 4-pt function.

The CPW’s are given is terms of a double series of the form

H∆s
(v, Y ) = v

1
2 (∆s−s)

∞∑
n,m=0

Anmv
nY m

This becomes particularly interesting when the operators are conserved spin-s
currents whose dimensions are
∆s = d−2+s. In this case we find that the leading singular term has the form

H∆s
(v, Y ) = A0sv

1
2d−1Y s[1 +O(v)] · · ·

The above behaviour can be used to detect the presence of higher-spin
conserved currents in a 4-pt function.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 36 / 54



Aspects of the OPE in O(N) vector models

Inserting the OPEs into the 4-pt function we obtain formulae like

Φ(v, Y ) =
∑
∆s

1

(x2
12x

2
34)∆φ

g2
φφOs
COs

H∆s
(v, Y )

with H∆s(v, Y ) the conformal partial wave (CPW) representing the
contribution of the operator Os and all its descendants into the 4-pt function.

The CPW’s are given is terms of a double series of the form

H∆s
(v, Y ) = v

1
2 (∆s−s)

∞∑
n,m=0

Anmv
nY m

This becomes particularly interesting when the operators are conserved spin-s
currents whose dimensions are
∆s = d−2+s. In this case we find that the leading singular term has the form

H∆s
(v, Y ) = A0sv

1
2d−1Y s[1 +O(v)] · · ·

The above behaviour can be used to detect the presence of higher-spin
conserved currents in a 4-pt function.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 36 / 54



Aspects of the OPE in O(N) vector models

Assuming the presence of one only scalar operator O
with dimension ∆ < d in the OPE, we have for the first few most singular terms

ΦS(v, Y ) =
1

(x2
12x

2
34)∆φ

[
1 +

g2
φφO
CO

v
∆
2 2F1(

∆

2
,

∆

2
; ∆;Y ) +

g2
φφT

4CT
v
d
2−1Y 2 + ..

]

We need to match this with an explicit calculation. The obvious one is free
field theory

ΦS(v, Y ) =
1

(x2
12x

2
34)∆φ

[
1 + v∆φ

(
1 +

1

(1− Y )∆φ

)]
We first obtain that

∆φ =
d

2
− 1 , ∆ = 2∆φ = d− 2 ,
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Aspects of the OPE in O(N) vector models

Hence we may write

O(x) =
1√
2N

φa(x)φa(x) , ⇒ CO = 1

Next we find

g2
φφO =

2

N

A conformal Ward identity fixes

gφφT =
d∆φ

(d− 1)Sd

and finally we find

CT = N
d

(d− 1)S2
d
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Aspects of the OPE in O(N) vector models

The simple expression

1

N
v
d
2−1

(
1 +

1

(1− Y )
d
2−1

)
packages efficiently the contributions of an infinite number of even HS
currents, the normalization of their 2-pt functions and their 3-pt function
couplings with the φ’s. The latter are determined by HS Ward identities,
hence the above expression ”knows” about HS symmetry.

It is challenging to reproduce this result holographically, not least because the
usual Witten graphs give zero for bulk singletons - see however [Leigh et. al.

(14)].
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Aspects of the OPE in O(N) vector models

Going on, we find the OPE of ΦA as

ΦA(v, Y ) =
1

(x2
12x

2
34)∆φ

g2
φφJ

CJ
v
d
2−1Y [1 + · · · ]

that gives the leading contribution of a spin-1 conserved current J .

We need to compare this with

ΦA(v, Y ) =
1

(x2
12x

2
34)∆φ

v∆φ

(
1− 1

(1− Y )∆φ

)
=

1

(x2
12x

2
34)∆φ

∆φv
∆φY [1 + · · · ]

Using the Ward identity for gφφJ we obtain

gφφJ =
1

Sd
, CJ =

2

(d− 2)S2
d
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Aspects of the OPE in O(N) vector models

For ΦφO we have the free field theory result.

ΦφO(v, Y ) =
1

x
2∆φ

12 x2∆
34

[
1 +

2

N
v∆φ

(
1 +

1

(1− Y )∆φ

)]

The ”direct channel” OPE x2
12 , x

2
34 ,⇒ 0 gives the expected contribution of

the infinite series of even HSs.

More interesting are the ”crossed channels” i.e. we consider here x2
13 , x

2
24 ⇒

when the OPE gives

ΦφO(v, Y ) =
1

(x2
13x

2
24)

∆φ+∆

2

[
g2
φφO

( v
u

)∆
2

2F1

(
∆

2
,

∆

2
; ∆; 1− v

)

+
g2
φOF
CF

( v
u

)∆F
2

2F1

(
∆F

2
,

∆F

2
; ∆F ; 1− v

)
+ ..

]

where (v/u) , (1− v) ⇒ 0.
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Aspects of the OPE in O(N) vector models

The free field theory result is expanded as

ΦφO(v, Y ) =
1

(x2
13x

2
24)

∆φ+∆

2

[
2

N

( v
u

)∆φ
2

+ (1 +
2

N
)
( v
u

) 3∆φ
2

+ ...

]

This is compatible with the presence of an operator of the form

F a(x) =
1√

4 + 2N
φa(x)φ2(x) , CF = 1 , g2

φOF = 1 +
2

N

Important to keep that the elementary field φa does appear in the OPE, and
hence in the spectrum.
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Aspects of the OPE in O(N) vector models

Finally we consider ΦO whose free field expression is

ΦO(v, Y ) =
1

(x2
12x

2
34)∆

[
1 + v∆

(
1 +

1

(1− Y )∆

)

+
4

N

{
v∆φ

(
1 +

1

(1− Y )∆φ

)
+ v2∆φ

1

(1− Y )∆φ

}]

It is the term in the second line on the r.h.s. that gives rise to the usual
contribution of the tower of HS currents. This term comes from the box and
papillon graphs that are constructed using the φ propagator.

The disconnected graphs give rise to a scalar operator with dimension
∆ = 4∆φ, which is proportional to (φ2)2, and a tower of higher-twist
currents.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 43 / 54



Aspects of the OPE in O(N) vector models

Finally we consider ΦO whose free field expression is

ΦO(v, Y ) =
1

(x2
12x

2
34)∆

[
1 + v∆

(
1 +

1

(1− Y )∆

)

+
4

N

{
v∆φ

(
1 +

1

(1− Y )∆φ

)
+ v2∆φ

1

(1− Y )∆φ

}]

It is the term in the second line on the r.h.s. that gives rise to the usual
contribution of the tower of HS currents. This term comes from the box and
papillon graphs that are constructed using the φ propagator.

The disconnected graphs give rise to a scalar operator with dimension
∆ = 4∆φ, which is proportional to (φ2)2, and a tower of higher-twist
currents.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 43 / 54



Aspects of the OPE in O(N) vector models

Finally we consider ΦO whose free field expression is

ΦO(v, Y ) =
1

(x2
12x

2
34)∆

[
1 + v∆

(
1 +

1

(1− Y )∆

)

+
4

N

{
v∆φ

(
1 +

1

(1− Y )∆φ

)
+ v2∆φ

1

(1− Y )∆φ

}]

It is the term in the second line on the r.h.s. that gives rise to the usual
contribution of the tower of HS currents. This term comes from the box and
papillon graphs that are constructed using the φ propagator.

The disconnected graphs give rise to a scalar operator with dimension
∆ = 4∆φ, which is proportional to (φ2)2, and a tower of higher-twist
currents.

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 43 / 54



Outline

1 Motivations

2 O(N) vector models: review
O(N)→ O(N − 1) symmetry breaking in the bosonic model
The fermionic O(N) vector model: lightning review
Anomalous dimensions

3 O(N)/HS holography
The gap equations from holography
The singleton deformation of higher-spin theory and boundary symmetry
breaking

4 Aspects of the OPE in O(N) vector models
The conformal partial waves: free field theory
The skeleton graphs

5 Summary and outlook

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 44 / 54



Aspects of the OPE in O(N) vector models

To deform the free theory we use an expansion in”skeleton graphs” built
using just three ingredients: the (unit normalised) 2-pt functions of the
operators φa(x), O(x) (with dimension ∆̃) and the 3-pt function

〈φa(x1)φb(x2)O(x3)〉 = g∗
1

(x2
12)∆φ− ∆̃

2 (x2
13x

2
24)

∆̃
2

δab .

The parameters ∆̃ and g∗, as well as all other parameters (i.e. coupling and
scaling dimensions) will be determined by studying the consistency of the
skeleton expansion with the OPE.
We also need to ”amputate” using the inverse 2-pt functions

δabΓ(x1, x2, x) ≡
∫
ddx3〈φa(x1)φb(x2)O(x3)〉〈O(x3)O(x)〉−1

= g∗
f(∆φ, ∆̃, d)

(x2
12)∆φ− ∆̃

2 (x2
13x

2
24)

d−∆̃
2

δab

with x the internal point of a graph, and f(∆φ, ∆̃, d) are ratio’s of
Γ-functions.
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Aspects of the OPE in O(N) vector models

This construction an important simplification from the usual 1/N
diagrammatic expansion of the vector model in that the full vertices and 2-pt
functions are used.

The skeleton expansion for ΦS will involve tree-exchange graphs with a single
O(x) internal line, ladder graphs with internal O(x) and φa(x) lines etc...

The leading exchange graph in the direct channel x2
12, x

2
34 ⇒ 0 yields the

remarkable formula

g2
∗F (∆φ, ∆̃, d)

1

(x2
12x

2
34)∆φ

[
H∆̃(v, Y ) + C(∆̃)Hd−∆̃(v, Y )

]
This is remarkable since it corresponds to the CPWs of both the operator
O(x) but also its shadow operator with dimension d− ∆̃.

It can be shown that the presence of the shadow term is necessary
for the graph to be analytic under a crossing transformation i.e. x2 ↔ x3.
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Aspects of the OPE in O(N) vector models

A given skeleton graph with 2n vertices has the shadow symmetry property

G(u, Y ; ∆) = [C(d−∆)]nG(u, Y ; d−∆)

It is believed that the above property is related to the analyticity of the graph
under crossing. Then, the full crossing symmetric 4-pt function can be
obtained by adding to the direct channel the crossed terms.

The crossed, box (and possibly all higher order) evaluate to the generic form

G(x1, x3, x2, x4) =
1

(x2
12x

2
34)∆φ

v∆φ

∞∑
n,m=0

vnY m

n!m!
[−anm ln v + bnm]
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Aspects of the OPE in O(N) vector models

Examples:

Modifying the free result for ΦS(v, Y ) by the O-exchange graph would imply
the presence of three scalar operators with dimensions < d! To avoid that,
we choose to cancel the free operator with ∆ = 2∆φ with one of the two

terms in the exchange graph. In fact, C(∆̃) < 0 for 2 < d < 4 and ∆̃ < d.
This way we fix g2

∗ ∼ O(1/N) and also d− ∆̃ = 2∆φ ⇒ ∆̃ = 2.

Modifying ΦA(v, Y ) we find

ΦA(v, Y ) = ∆φv
∆φY [1 + ..] + g2

∗v
∆φY [−A00 ln v +B00 + ..]

=
g2
J

CJ
v
d
2−1Y [1 + ..]

We need to kill the ln v terms in the first line, which is done if we assume that

∆φ =
d

2
− 1 +

1

N
γφ , ⇒ γφ =

2Γ(d− 2)

Γ(d2 + 1)Γ(d2 )Γ(1− d
2 )Γ(d2 − 2)
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Aspects of the OPE in O(N) vector models

To ΦφO(v, Y ) we need exchange graphs involving the elementary scalar φa.
These give both the CPW of φa but also of its shadow with ∆ = 5/2. One
would also think that both contributions are O(1/N). Quite remarkably, the
latter contribution is singular, needs to be regularised and eventually gives
rise to a O(1) term in the 4-pt function. This is necessary to correctly match
with the OPE and make sure that the ∆ = 5/2 operator does not appear!

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 49 / 54



Aspects of the OPE in O(N) vector models

The issue with AdS graphs:

A scalar field exchange graph in AdS in the direct channel gives

1

(x2
12x

2
34)∆φ

[
H∆(v, Y ) +

∞∑
n,m=0

vnY m

n!m!
[−anm ln v + bnm]

]

namely, the shadow contribution is missing. Nevertheless, one can show that
such a graph is still analytic under a crossing transformation. This is due to
some highly non-trivial Kummer-like relationships for 3F2 functions!

A. C. Petkou (AUTH) Vector Models and HS Holography PCTS Princeton, 7 Nov. 2014 50 / 54



Summary and outlook

A complete holographic description of O(N) vector models should account
for their rich vacuum structure i.e. the O(N)→ O(N − 1) symmetry
breaking pattern in the bosonic case. We have argued that this can be done if
the bulk theory absorbs singletons field by shifting its parameter N → N + 1.
This is the bulk dual of the global symmetry breaking/enhancement
mechanism in the boundary. [see also Gelfond and Vasiliev (13)]

The boundary singleton interaction generates the same 1/N graphical
expansion for the elementary scalar and ”spin-zero current” as in the
standard field theoretic treatment of the O(N) model. Hence, the singleton
deformation breaks higher-spin symmetry and yields the well-known
anomalous dimensions for the elementary and ”spin-zero” scalars of the
O(N) model, at least to leading order in 1/N .
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Summary and outlook

Is it important to understand better the boundary marginal coupling of the
singleton to higher-spin currents. For example, given the singleton field φ,
one may consider boundary couplings of the form

SHS ∼ λ′
∫
tµ1...µsφ∂µ1

...∂µsφ ,

where tµ1..µs is the leading coefficient in the asymptotic behaviour of a bulk
spin-s gauge field → higher-spin dressing of the O(N) model.

For s ≥ 2 there are more than one possible terms. Generally, this has no
effect on the vacuum structure, if that is determined by space-time constant
configurations.

It is expected that such couplings would lead to a graphical expansion for the
2-pt functions of the boundary higher-spin currents which would enable one
to calculate their 1/N anomalous dimensions. Reproducing the result would
then be a crucial test for our proposal.
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Summary and outlook

Our results can also be applied to the holographic description of
three-dimensional fermionic and supersymmetric models with higher-spin
duals. Notice that such models describe parity symmetry breaking, and it
would be interesting to understand the bulk counterpart of it.

The singleton deformation could also play an important role in the study of
possible black-hole solutions for higher-spin theory on AdS4. For example,
since a continuous symmetry cannot be broken at finite temperature in 2+1
dimensions, we expect that bosonic singleton absorption would not be
possible for higher-spin theories in black-hole backgrounds, while fermionic
singleton absorption would be allowed.
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Summary and outlook

It is a formidable task to compare boundary skeleton expansion and the bulk
Witten graphs, although they arguably describe the same theory.
Hint:
Boundary skeleton graphs do not have HS exchanges: I can built a HS theory
using a single scalar vertex. But they have shadow-symmetry properties, and
this is the part ”speaking” to HS coming from the free theory.
Bulk graphs do not have shadow-symmetry: but to built the theory one
would need all HS exchanges. Namely, they include the ”free part” that was
actually ”cancelled” by the shadow term in the skeleton graphs.
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