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Abstract

This undergraduate thesis purpose will be to understand the Black
Hole Information Paradoz , formulate it as a “Theorem” and discuss it’s
inevitable conclusions. To do that, we will follow some basic steps:

1) Define a set of “Niceness Conditions” (which we will demand the
following steps obey) such, that it will give us local hamiltonian evolu-
tion (low curveture, avoidance of Quantum Gravity effects and non-local
effects)

2) Define a “Traditional Black Hole” (Schwarchild metric,solar mass,
low curveture at it’s horizon R ~ 515 , infromation free horizon)

3) Slice the Black Hole spacetime (1-3D slicing). The slices will be
made in such way, that they will be able to cover our whole spacetime
(and r = 0). Their time evolution will give rise to real entangled pairs.

4) Study the overal state as the Black Hole evaporates, connect the
notion of information to “Entanglement Enropy” and see how the paradox
rises.
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1 Introduction

First let us introduce a simplistic view on what the information paradox is.

It is a well-known phenomenon that a black hole, if it is small enough and
we use the appropriate timescale, will radiate until it evaporates (Hawking radi-
ation). But how can a black hole radiate? What kind of radiation is that, and
what information does it carry?

To answer these questions, first we will need to present an (also simplistic)
explanation on what hawking radiation is. We know that, in general relativity,
there are no outgoing particles capable of escaping the horizon of a black hole,
due to the high strength of the gravitational field. But if one was to consider
some phenomena that exist in the world of quantum mechanics, escaping the
horizon might become possible. For instance, we can assume that a pair pro-
duction takes place “just” inside the horizon. The first particle will follow an
ingoing trajectory until it reaches the origin singularity and the second, the
outgoing one, will “tunnel” it’s way (quantum tunneling) through the horizon
and escape to infinity.

Now let us assume the above black hole, to be a non-rotating one (take
Schwarchild solution for simplicity). The only information we have about such
hole, is it’s mass (assuming we know the mass of the star which collapsed to our
black hole). This means that to this black hole, even though it seems intuitively
wrong, we can assign just one state ( |[¢as) ). Hawking proved, the calculations
will be presented later, that the radiation quanta from such a black hole will
all be approximately in the same state. And that gives rise to our paradox.
If there exist two black holes, (capable of radiation) with the exact same mass,
no matter what they are made of, their radiation will be the same. Meaning,
if someone were to collect all the radiation quanta emitted by those holes until
their evaporation, he would not be able to separate them. In that sense we
can say that the initial information about the states of matter that fell in the
black hole, has vanished! This is something that contradicts with one of the
fundamental postulates of quantum mechanics, information has to be conserved
(to be more precise “complete information about a system is encoded in its wave
function up to when the wave function collapses” is the correct formulation, but
since no such collapse should take place the above is a valid conclusion).

Now let us see how this paradox arose, this time in a more precise view.
Hawking wanted to calculate quantum effects on a curved space near a black
hole. Knowing that the attempts to obtain a Quantum gravity theory through
duality led to a dead end (i.e. a non-renormalizable theory), he thought of
using a semiclassical approach. Semiclassical gravity is the approximation to
the theory of quantum gravity in which one treats matter fields as being quantum
and the gravitational field as being classical. Written in Finstein equations :

where v indicates the quantum state of the matter fields.



In semiclassical gravity, matter is represented by quantum matter fields that
propagate according to the theory of quantum fields in curved spacetime. But,
unless the background metric tensor has a global timelike Killing vector, there
is no way to define a vacuum or ground state canonically and this is some-
thing we need. The concept of a vacuum is not invariant under diffeomorphisms
(given two manifolds M and N, a differentiable map f : M — N is called a
diffeomorphism if it is a bijection and its inverse f~! : M — N is differen-
tiable as well). This is because a mode decomposition of a field into positive
and negative frequency modes is not invariant under diffeomorphisms. If t’(t)

is a diffeomorphism, in general, the Fourier transform of elik O] will contain
negative frequencies even if £ > 0. Creation operators correspond to positive fre-
quencies, while annihilation operators correspond to negative frequencies. This
is why a state which looks like a vacuum to one observer cannot look like a
vacuum state to another observer; it could even appear as a heat bath under
suitable hypotheses!

Quantum gravitational effects become apparent only near Plank scale (i.e.
small distances, high energies) or high curvature (which in gravity is essentially
the same as high energy). So if we want to avoid such effects (still not entirely
but for them to be small) we will have to define an appropriate limit where a
local, well defined, approximate evolution equation will become possible. This
equation is, of course, needed to describe the evolution of our system since we
will have to deal with radiation that goes on until our black hole evaporates
and we will need several later states of our system. We will name this limit
“solar system limit”, where the term signifies that we can do normal physics
when spacetime curvatures are of the order found in our solar system.

“Hawking’s Theorem” as Mathur formulated it, starts with a natural set of
niceness conditions N, and proves that requiring locality with these conditions
would lead to an ‘unacceptable’ physical evolution. This Theorem, (in each
detailed form presented below) is a very precise statement of the contradiction
found by Hawking, and bypassing the paradox needs a basic change in our
understanding of Quantum physics.

2 Quantum Field Theory

2.1 Simple Harmonic Oscillator

Starting from Schridinger’s picture, i.e. letting the quantum states evolve
in time, we will quantize Simple Harmonic Oscillator. The wavefunction is the
set of all coefficients of the state vector |¢), written in a delta-function basis of
position |z):

b)) = / dwi (z,1) ) (1)

By defining the operators & = z and p = —i% as operators of position and



momentum respectively, we introduce the (canonical) commutation relation:

[2,p] =1 (2)
The Hamiltonian operator of the Simple Harmonical Oscillator is :
. 1/0N\> 1 ,,
and the Schrédinger equation of motion:
oV (x,t -
2D ey, (h=1) @)

The fact that the Hamiltonian is time-independent lets us use the method of
separable variables, so we write ¥ (z,t) = f (z) g (¢). For n < 0 and normalizing
we get:

U, (2,t) = e(2)7° H, (\Jaow) e~ Bnt (5)
where H,are the Hermit polynomials:
d'll 2
H,=(-1)"e" ~—¢® 6
(1) e e (©)

and :

E, = (n—i—;)w (7)

are the energy’s eigenvalues. All the states are eigenstates of the Hamilto-
nian. A Simple Harmonical Oscillator’s state can be written as a superposition
of eigenstates:

Y (z,t) = chwn (z,t) (8)
Crare normalization constants. Its ground state has energy:
E,=-w (9)

a fact that contradicts with the Classical case, in which for x =0 and p =0
the energy of the Oscillator is zero.

2.2 Creation and Annihilation operators in the S.H.O.
case

Another solution of the S.H.O. problem can be found by introducing Anni-
hilation and Creation operators ,&'and é&. Let us now get an idea of what are
these operator, and how they operate on the S.H.O.



We define:

b= (wi + ip) af = —— (wi — ip) (10)

V2w

¥

From this definition we can easily derive:

i= \/% (a+al) p= —i\/g(d—af) (11)

We will now introduce the necessary canonical quantization relation we will
make some computations to derive this relation.
Proof:

(6,67 ¢ = aaly — alarp =

= o [+ i) (i — i9) 6 — (w0 — i) (wi + i9) 4] =

1 ~ ~ ~ N
== {(w2m2 + P2+ iwpi — iw:@ﬁ) W — (w2x2 +p? — iwpE + iw:ﬁ;ﬁ) q/)} -
w

= o [2iwpiy — 2iwipy] =
—i (_iaa:c) (x) — iz (_iai) v =

0 0 0
= [d,@ﬂz/}:%(m)—xa—i’: (axsc>@/1:1/} =

[a,af] =1 (12)
Our new Hamiltonian will be:
A ~f A 1
H=(4&"a+ 5w (13)
Also we can easily derive the commutation relations:
[11,6] = ~waand [,af] = wal (14)

Now observing the relations (14)and (9)we are tempted to define the number
operator :
n=ala (15)

We will take as a basis the set of all the eigenfunctions |n), and define the
operation of number operator to be:



A ln) = n|n) (16)

We will show that the operation of creation and annihilation operators is the
following: When the creation operator &'acts in an eigenstate ( of 7 )|n), it will
give us another eigenstate of 7 but with an eigenvalue increased by 1. When
the annihilation operator acts on a eigenstate (of 1) |n), we will get another
eigenstate of 7 but with an eigenvalue decreased by 1.

This way, by defining |0)as the ground state, we van create all the other
state by multiple actions of creation operator.

Proof:
[ﬂ AT}_AAT AT — (MT t_ata— Lat) =
o'l =Ha' —a'H=w | na'+ -a —an—ia =
— wha! — wa'h ﬁ@f—f([ﬂ,w]wam) —
w
— aal =a' (1+n) (17)
P AL n . L1,
[H,a]:Ha—aH:w<na+2a—an—2a>:
A = o Lora =
= wnh — wan <= na:—QH,a] +wom> —
w
— nad=a&(h—1) (18)
Thus:
natn) = at (1 +7)|n) = (n+1)at|n) (19)
adn) =a&(m—1)|n) = (n—1)a&|n) (20)
for n > 0.

We will the define the ground state, as the one the equals to zero after the
annihilation operation:

&0y =0 (21)
As we stated, now we can produce all the other states from the ground state
with the operating on it with &', thus:

n) = — (a")" |0) (22)

1
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Lets now write the eigenvalues of the annihilation and creation operators, in
the S.H.O. case. From (21):

z;%uwwwm—ly:1t;;1m-¢>:¢%m—1>¢:
= aln) =vn|n-1) (23)
~ ~ 1 A\ n+1 ey n+1
al|n) = aTW (af)"|0) = m (@) ") =vi+1ln+1) <

— a'ln)vn+1jn+1) (24)
2.3 Heisenberg’s Picture

The idea that quantum states evolve in time but the operators of the corre-
sponding observables do not, is called Schridinger’s picture and its the one we
have used until now. Here on out though it would be advisable to use another
picture, totally equivalent to Schrédinger’s, so that we can smoothly go from the
first quantization to Quantum Field Theory. This picture is called Heisenberg’s
picture and in it quantum states remain them same, while the operators evolve
in time.

Let A be an arbitrary operator. The equation describing its evolution is
called Heisenberg equation.:

dA(t) 17; .
0 a4 .
and it can be solved by giving:
A@t) = e F R = UT (1) AT (1) (26)
For the S.H.O. we get creation and annihilation operators evolution by:
da (t dat (t
O;Z)E ) = —iwé& (t) and &’ () = iwd' (t) respectively (27)
and solving them we have:
a(t) =e ™G (0) and a' (t) = ™™l (0) (28)



And interesting fact, is that the number operator we defined earlier, remains
the same under time evolution.
Proof

n(t) = &' (t) & (t) = e ™'a (0) et™al (0) = &' (0) & (0) = 7 (0) (29)
2.4 Quantum Field Theory, In Flat Spacetime

In Field Theory, for an n — dimentional spacetime, Action is the time inte-
gral:

§= / &zl (30)

Also in Field Theory, unlike in relativistic approximation, Klein-Gordon’s
equation does not have any problems. Since it’s the one describing bosons,
which we will find in our problem,

and is in general more simple we will prefer using it over Dirac’s. The
Lagrangian Density in a 4 — D flat spacetime is:

1 1
L= 0" 0up0p ~ §m2<p2 (31)

Where n*¥ is the Minkowski metric tensor:

-1 0 0 0
0 1 0 0
pr _
T"T1 0 010 (32)
0 0 0 1
and ¢ is a real scalar free field. The metric is:
ds® = —d* + (d(2%))? ,i=1,2,3 (33)
We can derive the Fuler-Lagrange equation from:
oL 9 oL
— =-mp and ——— = —0¢p (34)
dp 9 (9up)
and thus we get the Klein-Gordon equation:
—0,0" 0 +m?p (35)
The conjugate momentum to the field is:
oL oL .
relto Oy (30)
Op 9(dop)

The connection between Hamiltonian Density and Lagrangian Density is
given by the Legendre Transformation :

10



H(p,m) = om — L (¢, 0up) (37)
and from it, we can derive the Hamiltonian H = [ d*zH.

Now moving to the quantization of the field. We will use our knowledge from
Harmonic Oscillators quantization. Only this time instead of z, p (the conjugate
position and momentum) we will use ¢ (:vl) ST (:vl) which are the values of the
field in all space, for a given time. Keep in mind that this is a Quantum Field
Theory, so we will need these field to become operators. This is the main reason
we needed to use Heisenberg’s picture.

Now solving the Klein-Gordon equation we get:

© (l’l) _ (poeikia:i _ woefiwt+ikj:vj (38)

fori=1,2,3,4 and j=1,2,3

This solution describes a plane wave. So, as plane wave, it should satisfy
the dispersion equation:

i\ 2
w® = (k)" +m? (39)

To be able to write the field ¢ in the form of an operator, an idea is to present
in our solution our known creation and annihilation operator. Only this time
their number will be infinite. But first it is vital that we write a Klein-Gordon’s
general solution, forming a complete and orthonormal set of wavemodes (for
every w (k%)).

The inner product of two plane waves is <eiki1””-7’ , etk > Using Gauss The-
orem it can be proven that this inner product is independent to the surface it’s
defined on. Thus on an arbitrary surface we get:

<€ik11mj,6ik12$j> _ —Z/ (e*iwltJrileiEj8teiw2t*ik3217j _ eiwgtfikézjatefiwlthilemj) de

par

— <eikilzi7eiki2xi> _ (wl + w2) efi(w17w2)t (27T)3 53 (kjl — ké) (40)

which due to the delta-function 6"~ Vdisappears in all cases except the one
where the waves have the same k.
Now let us define our wavemodes as:

ikiz,
for (@) = —— (41)
o) ((27r)32w)§ "

We define us positive ;modes described by:

atfkj = —inkj, w>0 (42)

11



and negative ;,modes described by:

From (40)we can see that the modes satisfy:

<fk.7~l,fkj2> =4 (kjl - kg) (44)
and their complex conjugates:
(i fiy) = =0 (K- #%) (43)

Its also fairly obvious that:

(fn i) =0 46)

which means that the modes and their complex conjugates, are orthogonal
to each other. We write the Klein-Gordon equation as:

o (t27) = / [0 (k) fus (t,29) + 0" () 5, (ta9)] Pk (47)

To conclude our plan to write the fields and their conjugate momenta in
operator form, we write the above us:

b (%) = [ [awdo (67) + 6l i (6.07)] (48)

Finaly to have a Quantum Field Theory, we need to impose the canonical
Quantization commutation relations:

[sﬁ (t,27),¢ (txj)} =0 (49)
[fr (t,27) 7 (mﬂ)} ~0 (50)
{gb (t,xﬂ,fr(t,xj/)} =46 (xj—xj/) (51)

where these relations are define on hypersurfaces with the same t.

From (51)we can see that the condition that needs fields pand 7 to commute,
holds for the whole space. The only case in which it does not hold, is that where
their space coefficients coincide. Another thing we can derive from (49 — 51), is
that the commutation relations for dand dfare the same us in Simple Harmonic
Oscillator. The only difference lies with the fact that there is one such relation
for every j:

[gs Gy ] =0 (52)
la1,.af,] =0 (53)



[@kj : @M = 5 (kj - kj’) (54)

Similarly to the Harmonic Oscillator, we define the ground state, which here
we call Vacuum State, as:

G, |0) = 0 for every k7 (55)

Also, we can create from this state all the other states, by operating on it
with &Lj:

) = <= (k)™ 10 (56)

The state with n; excitations and all different k7 is written us:

1 NI (o \ i b\
|n1,n2...nl> = m (O(;{) il (O(L%) *2 (O(ng) ki |O> (57)

Creation and annihilation operator’s action is:
OAzkz |n1,n2, ey NGy .77,[> = \/N; |n1,n2, R 17 7 ,’Ill> (58)

and

&L? [ni,ng,. . .0, .my) =V + 1 ng,ne oo s, . ) (59)
The number operator takes the form:
s = Gl ;G (60)
and its action is:
ﬁk{ |1, M2y ey Mgy ey M) =15 N1, N2y ey Ny ey Ty (61)

Ny eigenstates define, what is called, a Fock basis in the Hilbert space.

2.5 Quantum Field Theory In Curved Spacetime

To have a Quantum Field Theory in a curved spacetime we use similar
methods to the ones we used in the flat, Minkowski spacetime, but of course with
some appropriate additions. This time though, we will face some peculiarities
that occur due to the nature of the theory which describes the curved spacetime;
General Relativity.

Starting as in the above chapter we write the appropriate Lagrangian Den-
sity:

13



1 1
L=+—g (29“”Vmovucp — §m2502 — £R<p2) (62)

9w is the metric tensor of this spacetime. We write g = det (g). Then /—g
is the incremental volume coefficient, which in Minkowski spacetime was 1 since
there:

~1.0 0 0

v 0 100

gr=T= 10 01 0 (63)
0 00 1

We have also introduced the coupling with the Ricci scalar, through . We
use General Relativity’s theorem for Minimal Coupling and set ( = 0. Moving
to quantization, we find the conjugate momenta:

oL N
T=——
d (Vo)

T ==gVop = V=900p = V/—=g¢ (64)

because for scalar fields covariant derivative is equivalent to a partial deriva-
tive.
The commutation relations we require are:

[@ (t,2)),¢ (t,xl/)} ) (65)
(7 (tat) 7 (La")] =0 (66)

[gﬁ (t,xl) s (t, xll)} = \/i_igd?’ (xl - xll> (67)

The equation of motion will be:

9"V Vo —m’p (68)

It can be proven, again with the use of Gauss Theorem of divergence, that
the inner product of scalar fields ¢ is independent from the hypersurface it has
been defined on; i.e.:

(p1,02)5, = (P1,02)5, (69)

At this point we face the first peculiarity. In curved spacetime the symme-
tries of Poincare transformation’s, apart from Lorentz Rotations do not exist.
Thus there isn’t a way to define a (Global) Timelike Killing Vector globaly. So
we can define many basis for our modes, and there we do not have a good rea-
son to choose one particularly. Concluding, the forms of vacuum, and number
operator depend on the basis we choose.We will proceed as follows.

14



We assume spacetime is Asymptotically flat and we divide it into 3 parts:

Part 1: Here spacetime is flat. We choose for the modes f that leave here
and determine the number of ingoing particles.

Part 2: In this part, spacetime is the curved spacetime.

Part 3: In this region spacetime is also flat. The modes here are g and they
determine the number of outgoing particles.

Now lets discuss in detail what happens in each of these regions.
Part 1:

The complete, orthonormal set of the basis for positive modes is:

(fjs fir) = diyr (70)
and for negative modes:
(fr: 1) = =0y (71)
with:
<fj7f;’>:O (72)

Hence we can write down the solutions of (68) as:

p=> a;fi+a;f; (73)
i

We write the commutation relations for &; and 07}:

[&,65] =0 (74)
[ajaj] ~0 (75)
[;.a1,] = 5, (76)

Here we will prove that (65 — 67) hold, with the use of

Proof:

15



= (0, @1 = (ldj.ay] fifir + [dj, a5 ) fi £+ [dTae] £7 f + [t a5 ) £ 07) =

i’
= i fity =05 £ fyr) =
i’

= @@= (fify = f11)=0

J

7] = | (V=giw) Y (4 f; = dif;), (V=giw) Y (@5 f7 —ay fir) | <=

7 7
= (7,7 = (—gww’) Y (ldy, ay) i fy = gy ] fify = (a5t @] £ i+ [diT a5 T] £5 1) <=
i

[, 7] = (—gwe') Y (=835 [l + 835 7 fir) =0

Ji’

J J

[p, 7] = [S@\/jgs;} ZVTQ[Z aifj +d;'f; ,Z(a]f] +d;tf )] —

= [¢,ﬁ’]=z¢fg([dj,a}/]fjf}f+[a}'»aj ik + (a5 ay) £ fr + (65T, a1 1 f*)

= [¢,ﬁ’1gm([dj,aj V0l + [6ha) £y =

i

= [p, 7] =—iiy_ V=g (a Sl — 5~/f*f'v> = =5y
= 1374343 7774347 \/TQ 23
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The vacuum state in this region is |0>f :
d;|0); =0 for every j (77)
and the number operator will be:
iy = djld; (78)

An arbitrary excited state can be produced by multiple operations of aAij,i.e.:

) = o= (a1) " 0, (79)
Part 2:

We follow the same procedures, but this time for modes g; and the complex
conjugatesg;.

2= (bigs +0lg;) (30)

J

Where bjand Ejare the annihilation and creation operators. It must hold:

(0,57 =0 (81)
[bjb” —0 (82)
[6,81,] = 05 (83)

The vacuum state |0), will be given by:

l;j 0), =0 for every j (84)

and the number operator:

fig; = bib; (85)

We notice here that the vacuum state in region 1 will not necessarily be the
vacuum state in region 2. To prove that, we need some transformation that can
connect the set of modes f with the set of modes g .The transformation we shall

use is known as Bogoliubov Transform after its creator. The Matrices o;; and
Bi; are called Bogoliubov coefficients:

fi=>_ (cujgi + Bijg}) (86)
J
and

17



gi = Z (i fi + Bij ) (87)
J

For the bogoliubov coefficient hold:

aij = (fi, 9i) (88)
and
Bij = — (fi,9;) (89)
Proof:
Let g;be:

g9i =Y cijfi +dijf;

J

for arbitrary c;; and d;;. Then:

(fir95) = Z (fircir fir +digi ) = Z (cigr (fis fr) + dige (fis 7)) =
.y j/

J
= (fi,95) = Zcij’(sij’ = Cij
j/

but :

(firg5) = Z (aijrgir + Biyr 95, 95) = Z (cvir (gjrs 95) + Bigr (951, 95)) =
J’ 3’

= (fig5) = Y _aijrdijr = o
j/
Thus:
cij = aij = (fi, 95)
similarly 8;; = — (fi, g7)-
It can be proven that the region 3’s annihilation operator that:

bi =Y aponi + a5 (90)
k

Thus lA)I i.e. the creation operator is:

18



bl = anBri + dfaj, (91)
k

Let us now assume that someone uses the g modes operators to check if |O>f
is the vacuum. To do that to do that he will need to compute the expectation
value of operator ng4; on the f vacuum. That is:

o> _
f

o>f - <o
0>f = ; <0 ‘fﬁki (d;&k + 5lk) Bi; 0>f =

= Z <0 ‘f&kﬁki&;rﬁl*i
kl
= 01 BriduBi 0y, =Y (01 BriBisl 00, = > BriBii =
k

kl k

(0 ‘fz}ll}i

f (Z&kﬁki + &Lazi> (Zdla” + d;ﬁ;)
k l

O>f = (5T6)“ (92)

That means that if some of those coefficients have none-zero values then
particles will be seen ,by the observer using the g modes operators, populating
the f vacuum.

3 Quantum Statistical Mechanics

In this chapter, we will present an essential ,to the understanding of the
paradox, view of Quantum Mechanics. When we encounter system with a high
number of subsystems, there is a need for a statistical model to describe them.
Thus, follow some basic tools we will use, that come from this, Quantum Sta-
tistical Mechanic’s, field.

3.1 Pure States:

3.1.1 Pure state

A pure state of a quantum system is denoted by a vector (jet) |1) with unit
length, i.e.(¢) )| = 1, in a complex Hilbert space H. Previously, we (and the
textbook) just called this a state, but now we call it a pure state to distinguish
it from a more general type of quantum state.

19



3.1.2 Inner product

We can define dual vectors (bra) (¢|as linear maps from the Hilbert space H
to the field C of complex numbers. Formally, we write:

(0l (1) = (o] ¥) (93)

The object on the right-hand side denotes the inner product in H for two
vectors |¢) and |¢). That notation for the inner product used to be just that,
notation. Now that we have defined (¢| as a dual vector it has acquired a second
meaning.

3.1.3 Operators

Given vectors and dual vectors we can define operators (i.e., maps from H
to H) of the form

O = [4) (¢| (94)

where O acts on vectors in H and produces as result vectors in H. The
hermitian conjugate of this operator is:

O = |¢) (Y| (95)

and it follows straight from the definition of the hermitian conjugate that:

((folm)) = ((nfor])) =

for all states |n) and |m) in H.
A special case of such an operator is the projection operator, or projector:

ot

Py = [¢) (¢ (97)
this is an operator which projects a vector onto the |¢>th eigenstate. First
the bra vector dots into the state, giving the coefficient of |¢) in the state, then
its multiplied by the unit vector |¢) , turning it back into a vector, with the

right length to be a projection. This operator is hermitian, and it hold:
P2 =P, (98)

We can use the projection operator 1% to describe all physical quantities we
can derive from the state |¢/). We use the symbol p to indicate (or emphasize)
we’re talking about a physical state rather than an arbitrary operator:

p=1v) (¥ (99)

and we call g the density matrix, or the density operator describing the state

|¥).
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Additionaly,it can be proved that a pure states density matrix remains pure
under Unitary transformations. The transformation acts on the p as:

p— UpUT (100)
Example:

if we take the two pure states:
0) £11)
V2

then the corresponding p are 2x2 matrices. Written in the basis {|0),|1)},
have the form:

[Ys) =

A
H
|
N[
N|—
N|—= H_
|

3.1.4 Trace
It is useful to define the ‘Trace’ operation:
Tr (K' ) = Z <n

where K is an arbitrary operator, and the sum is over a set of basis vectors
{In)}. If we write down a matrix representation for K , i.e., a matrix with

K

n> (101)

elements (n |K|m )then the Trace is the sum over all diagonal elements (i.e.,
with m = n).

A nice property of the Trace operation is that a basis change leaves it invari-
ant; that is, it does not matter which basis we choose in the definition of Trace.
Indeed, the Trace would be far less useful if it did depend on the basis chosen.

Also for the Trace of p we always have the normalization condition, which
in terms of Trace is Tr (p) = 1.

3.2 Mixed States
3.2.1 M:ixed state

Now let us define a more general type of states, described by density opera-
tors, by introducing miztures of pure states:

p—k= 1IN i o) (0 (102)
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where {|¢)} is some set of pure states, not necessarily orthogonal. The
number N could be anything, and is not limited by the dimension of the Hilbert
space. The N numbers (or ‘weights’) py are nonzero and satisfy the relations

|
0<pr<Lsk=1NY pp=1 (103)

The normalization of the weights pj expresses the condition Tr (p) = 1.
The quantum state described by p is called a mixed state whenever p cannot
be written as a density matrix for a pure state, or equivalently when the state
cannot be described by a wavefunction.

Since p is hermitian, we can diagonalize it, such that:

b =k= UMS Nelon) (10 (104)

where the states |¢y) are orthogonal (unlike the above definition). The
numbers \; satisfy:

[
0< M S L h=1M> A=1 (105)

The numbers Ay are, in fact, nothing but the eigenvalues of p. They sum
to one because of normalization. There are exactly M = d of these numbers,
where d is the dimension of the Hilbert space.

3.3 Entropy

Another important quantity is the entropy given by:

S (p) = ~Tr (plog ) (106)

One might wonder how to calculate the log of a matrix: just diagonalize it,
and take the log of the diagonal elements. That is,

S (p) :i: 1M " Aplogy (107)

where Ay are the eigenvalues of p.Note that these eigenvalues are non nega-
tive, so the entropy can always be defined. Indeed, a zero eigenvalue contributes
zero to the entropy, as:

limzlogx = 0
z—0
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3.4 Criteria

There are certain criteria that help us distinguish pure state from mized
states.

Criterion 1:

[
For p =k= 1]N> px |tk) (x¢| only if N = 1 and py, = 1 we can write p =
|1} (1]i.e. have a pure state. In all other cases the state is mixed

Criterion 2:
If 2 = j the state is pure. If 5% # p the state is mixed. In equivalence: If
Tr (p?) =1 the state is pure and if Tr (p?) # 1 the state is mixed.

Criterion 3:

When the entropy of a state is S (p) = 0 then the state is pure, and if its
S (p) > 0 then the state is mixed.

*Thus, there is no missing information for a pure state. A pure quantum
state corresponds to maximum information. It does not tell us all we could
know classically (for example, momentum and position), but it is the maximum
knowledge quantum mechanics allows us to have.

3.5 Systems consisting of Subsystems

3.5.1 Reduced Density Matrix

Consider a state for 2 quantum systems say A and B (we will use 2 for
simplicity but we can easily understand that this applies to any finite number
of systems). If we want to describe only one of them e.g. A, we need to define
the appropriate density operator. This is:

pa = Z (m|paplm)g =Trppas (108)

m

where p4 is called reduced density operator (matrix). The operation indi-
cated by Trp is called ‘partial trace” or a “trace over B”. We can also say we
“trace out” system B.

Ezxzample:

Take a pure state of the form:

D),y = 104 |1>B\J/r§|1>A 10) 5
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What is pa?
Answer: First calculate:

W) ap (Y] = % (10) 4 {0l @ [1) g (01 +10) o (1 @ [1) 5 (O] + [1) 4 (O] @ [0) g (1] + [1) 5 (1] @ |0} 5 O1)

where for convenience we inserted a sign ®, to indicate the different projec-
tors before and after the sign act on different Hilbert spaces (namely, those of
A and B, respectively). Then take the trace over B. Only the first and fourth
term survive this:

pa=Trn |0) 45 (8] = 5 (10)4 (0] + 1) (1)

Now that we have p4 we can check, for instance, if we want if this state is
pure or mixed:

Tr (%) =5 <1

i.e. the state is mixed.

3.5.2 Entangled State

An entangled state, is a pure (overall) state that cannot be written as a
product of states. Take the above example for instance:

W), = 10) 4 |1>B\2|1>A 10) 5

as we can see, it cannot be written as a product of states.:

W) ap 7 [¥)a 1) 5 (109)

How can we be sure that a pure state cannot be written as a product state?

Answer: just trace out system B, and check if p4 is pure or not. If p4 is
mixed then |¥) ,, is entangled. If its pure, then V), is not entangled. Of
course we can be sure just by computing p4 that our state is entangled because
our system consists of only 2 subsystems. If there where more we would have to
check all the subsystem density operators. If at least 2 where mixed, then our
system would be entangled.

4 A Quantum Paradox

Our purpose in this section will be to formulate the paradox as a Theorem. To
do that we will need to follow certain basic steps. Firstly we will define a set of
niceness conditions N ,which our next steps will have to obey. Afterward we will
define the Traditional Black Hole which we will us in euro model and also the
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natural vacuum. Then we will slice our spacetime using spacelike slices which we
will evolve in time (1-3D). We will see that as these slices evolve, pair production
will take place near the horizon. These pairs will be real, and collecting their
part that floats to infinity will give as the Hawking radiation. Studying these
particle states will lead us to the rise of the paradox. Finally, having created the
needed background, we will formulate the Hawking’s Theorem whose inevitable
consequences we shall discuss.

4.1 Solar System Limit

In our solar system, as we well know , spacetime is curved (due the mass of Sun,
planets and other celestial bodies). However, we do experiments and all kinds of
calculations without taking into consideration the effects of Quantum Gravity.
This happens because the curvature is so low, that we are not in need of Q.G.
corrections. Quantum Gravity’s effects become important, when the curvature
is that of plank scale (R ~ é) , i.e. the masses that create it are > M,,,. Also

we need some sense of locality to ensure that there won’t be any (or at least
important) action at distance between states that are very far from each other.
Thus we will define a limit, such that will enable us to define a well-defined,
local evolution equation.

Definition of Solar System Limit: There must exist a set of ‘niceness
conditions’ N containing a small parameter € such that when € is made ar-
bitrarily small then physics can be described to arbitrarily high accuracy by a
known, local, evolution equation. That is, under conditions N we can specify the
quantum state on an initial spacelike slice, and then a Hamiltonian evolution
operator gives the state on later slices. Furthermore, the influence of the state
in one region on the evolution in another region must go to zero as the distance
between these regions goes to infinity (locality).

4.2 Niceness Conditions N

1) Our quantum state is defined on a spacelike slice. The intrinsic curvature

()R of this slice should be much smaller than Planck scale everywhere: ®)R <
1

H
2) The spacelike slice sits in an 4-dimensional spacetime. Let us require that
the slice be nicely embedded in the full spacetime; i.e., the extrinsic curvature

of the slice K is small everywhere: K < l%
P

3) The 4-curvature curvature of the full spacetime in the neighborhood of
the slice should be small everywhere: (YR <« l%

4) We should require that all matter on the glice be ‘good’. Thus any quanta
on the slice should have wavelength much longer than Planck length A <« l%,

and the energy density U and momentum density P should be small everywhere
compared to Planck density: U < %4 , PK l% .
P P
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5) We will evolve the state on the initial slice to a later slice; all slices
encountered should be ‘good’ as above. Further, the lapse and shift vectors

needed to specify the evolution should change smoothly with position: dé\; L« %4
P

<
4.3 Traditional Black Hole

As a Traditional Black Hole, we will define a Black Hole with the following
characteristics. Its metric will be

2M oM\
ds® = — (1 — > dt* + (1 — > dr? 4+ 12dQ7,) (110)
r r

; i.e. the Schwarchild metric. The horizon is at r = 2M . We will assume its
mass to be small, for simplicity Mgy, ~ 3Km so the curvature at the horizon
will be low WR <« ﬁ But the most important feature of the Traditional
Black Hole is that there will be no information ( particles ) in the vicinity of its
horizon.

Definition of Information Free Horizon: A point on the horizon will
be called ‘information-free’ if around this point we can find a neighborhood
which is the ‘vacuum’ in the following sense: the evolution of field modes with
wavelengths 1, < A < M is given by the semiclassical evolution of quantum
fields on ‘empty’ curved space.

This evolution implies, as we will see, that we start with modes of small
wavelengths which are not populated by particles; so the state is the vacuum.
Only when those modes reach a the critical length

A ~ M will they be populated by particles and thus pair production will
take place.

4.4 Slicing the T.B.H. Geometry

The slicing as we stated above will have to satisfy the N conditions.The
Traditional Black Hole has a real singularity at » = 0 and a co-ordinate at
r = 2M . At r = 0 our niceness conditions will not hold since the curvature
is very high. At r = 2M g4 and g, become singular; the first vanishes, and
the second one diverges. Hence we need to make sure that our slicing is done
in way that our metric remains singular. We are going to divide our slice in
four parts. The state on the first slice is going to be the vacuum or the natural
vacuum for our Quantum Field Theory. Keep in mind that there is no global
timelike killing vector in this geometry. If we where to take a timelike killing
vector, say outside the horizon, it would become null at the horizon and then
spacelike inside of it. So our metric is time-dependent and when we proceed
to evolve our slice, the state will change and no longer be our natural vacuum.
This fact will lead to particle production.
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Part a:

For r > 4Mwe let the slice be t = t; = constant

Part b:

Inside r < 2M the spacelike slices arer = constant rather than t = constant
sincer and ¢ co-ordinates interchange. We let the slice be r = ry , % <r < %,
so that this part of the slice is not near the horizon r = 2M and not near the
singularity » =0 .

Part c:

We join these parts of the slice with a smooth connector segment C. The
connector is also made in a way that it satisfies the N conditions.

Part d:

To connect the interior part of the slice to the horizon with » = 0 will do a
trick. We will assume our B.H. was created by the collapse of a star a long time
ago. In these early times there was a shell of mass that was collapsing towards
r = 0 in flat spacetime to create the B.H. There was no singularity then, so we
can connect that part smoothly with r = 0.

The Penrose diagram bellow is that of a black hole formed by collapse of the
‘infalling matter’. We can see the initial slice S;and the evolved slice Ss.

r=0 i+

10: future timelike infinity, ¢_: past timelike infinity, ¢, : spatial infinity, J,:
future null infinity, J_: past null infinity.

The radial null geodesics are at +45 and -45 degrees. All null geodesics
i4+,t—, Jrand J_ and at 9.
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4.5 Evolution to later slices

From Wheelers Theorem in general relativity, we have what is called many-
fingered time. This means that we can evolve every point in space with a
different time variable. To put it simply, we can evolve our slices anyway we
like, since they keep obeying our niceness conditions N. We will now evolve our
initial slice S7 to the later one Ss.

Part a:

At r > 4M we take t =t1 + A .

Part b:

The r = const part will be r = r; + 6 where §; < M.We let 51 be small,
and will later take the limit where 6; — O for convenience.

Part c:

We again join the parts a,b by a smooth connector segment. In the limit
01 — 0 we can take the geometry of the connector segment C' to be the same
for all slices. Note the very important fact that the r = const part of the later
slice Sy is longer than the r = const part of S;. This extra part of the slice
is needed because the connector segment has to join the r = const part to the
t = constant part, and the ¢t = constant part has been evolved forwards on the
later slice.

Part d:

At early times we again bring the r = const part smoothly down to r = 0,
at a place where there is no singularity.

4.6 Scales and Limits

Lets have a better understanding of length scales, and then consider some
limits needed to define Locality in a more precise way. The length and time
scale involved in the pair creation and in fact most of the procedures we follow
is L ~ M ~ 3Km which is the mass of our Black Hole (Mj,,). Another scale
is the distance between the matter shell and the pair created on the slice which
is L' = 10""light years. Ensuring that the L ~ M ~ 3Km is used in every
procedure our assumption of A\ ~ M for the particles created becomes more
concrete. As for our limits we have

’ ’

L L L
=31, —>1 =>1 (111)
l I L

The first two inequalities say that all length scales are much longer than
Planck length, and the last says that the matter M is far away from the place
where the pairs are being created.

4.7 Changes between the Slices

Let us now understand the changes between the slices, during their evolution.
In (1-3D) ( or ADM) formalism, there exist the shift vectors N'and lapse
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function N that show us how the slices of the spacetime are welded together.
In general we have N = (—#g00)=1/2 and N* =) go; where g,, is our metric
tensor. Assume a point on S;with spatial co-ordinates z'. Now move along the
timelike normal till we reach a point on Ss5. Let this point on S5 have the same
spatial coordinates z*. Thus we have set the shift vector to be N? = 0. With
this choice we can describe the evolution as follows:

Part a:

In thet = constant part of the slice we have no change in intrinsic geometry.
This part of the slice just advances forward in time with a lapse function N =
(1 2)-12

T

Part béd:

In the limit 61 — 0. The r = const part of S; moves over to Sy with no
change in intrinsic geometry. The early time part which joins this segment to
r = 0 also remains unchanged.

Part c:

The connector segment, C of S1has to stretch during this evolution, since the
corresponding points on Sy will have to cover both the connector C of S, and
the extra part of the r = const segment possessed by Ss.

we notice that the stretching takes place only in the C' part. This part has
space and time dimensions of order L ~ M ~ 3Km, i.e. the scale of our Black
Hole’s mass. A later slice S, will evolve to a next S, 1 exactly like S evolved
to S3. Each evolution from S;, to S, 1 can be described as follows: Divide S,
into a left part, a right part, and a middle part (which is the connector region).
In the evolution to S, 11, the left and right parts stay unchanged but are pushed
apart, and the middle part is stretched to a longer length. The length of the
middle part is ~ M, the proper time between the slices in this middle region is
~ M, and the stretching is by a factor (1 + «), with o ~ 1. Thus the connector
part C will grow in length with every such step by ~ M.

At this point we need to emphasize on the fact that the stretching takes
place in the region C' only. So the Fourier modes which used to be the vacuum
state on our initial slice will also stretch to longer and longer wavelengths every
time, until they reach the critical wavelength A ~ M and will be populated by
particles. *Note that the fact that the stretching takes place only in the C region
means that the only the modes of this region will stets ( at least significantly).
This way particles will keep being created until the Black Hole becomes very
small. We cannot have such a set of slices in ordinary Minkowski space. If we
try to make slices like those in the figure bellow in Minkowski space, then after
some point in the evolution the later slices will not be spacelike everywhere: the
stretching part will become null and then timelike. But it is the basic feature
of the black hole that the space and time directions interchange roles inside the
horizon, and we get spacelike slices having a stretching like that of the figure
bellow throughout the region of interest.
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correlated pairs

N
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vy e °
/‘ :
e

.+"‘-J infalling

matter

r=0 r=2M

In the figure above we can see that the infalling matter |¢),, is far away
from the pair created. We assume L ~ 1077light years which the same scale
that Hawking used.

4.8 Pair Production

Now we are going to derive the exact state of the pair as it is given by
Quantum Field Theory in curved spacetime. We are going to look back to the
Bogoliubov coefficients

and the action of the annihilation operator on the vacuum state f.

0=4d;|0), = Z [OffkbAk - ﬁkbz] 10} (112)
k
solving for one mode:
(b+7b")[0);, =0 (113)
we get the solution: B
0}, = Cer* |0), (114)

where C' is the normalization constant and p is a number we have yet to
define. We expand the exponential in series:

eHbe! % (zﬁzﬁ) (115)
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using the commutator [l;, bt = 1] we get:
b (55)" = (5" 2t (57)" (116

substituting the series to the exponential we have:

S et Yoaptet
btV |0), = 2ubTe*” " |0), (117)
Now observing equation (113) we conclude that we must choose p = —3.
Thus we get: o
_agipt
0), = Ce 2" |0), (118)

This state is one of the form:
10); = Co [0),, + CabTb" |0),, + CabTb'bTdT [0), + ... (119)

In (112) we can see that we have one part of the g vacuum, one part that has
2 particles, one part that has 4 and so on. Thus for (....) we have the solution:

—1 3 5] Y bl
|0), =Ce ~mn 0), (120)

where v is a symmetric matrix, containing the Bogoliubov coefficients.
_ 1T
= (a 18+ (a'B) ) (121)

Now returning to our slices. We have seen that the evolution of a slice, leads
to deformation on the connector geometry (stretching). This deformation leads
to the change of the Quantum state we had in the past slices i.e. the vacuum
changes, leading to particle production. The Stretching is characterized by a
space and time scale of order L ~ M ~ 3Km. So the created particles will have
wavelengths A ~ M. From (...) is apparent that the particle will be created in
pairs, and the number of pairs which we will choose will be n ~ 1.

For the state of every pair from (118) we have :

oyt
|q/)>pair =Ce’ ’ |0>c |O>b (122)

But to understand essence of the paradox our chosen one pair is enough, i.e.
the state we will use is :

1 1
) pair = NG 10).10), + 7 1) 1), (123)

Using locality which we assumed in our N conditions, we can write for the
full state (Black Hole and pair) after the first pair production:

) = )y @ (;5 0010}, + 5 I |1>b) (124)
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the =~is used here instead of =because in our assumed locality we asked that
the action at distance will — 0 as the distance grows, so the effects of our Shell
of mass state on the pair won’t be exactly zero but close to zero. How small
can we the divergence from this state be? If we write |¢),, as a spin state of
only up and down possibilities, i.e. [¢),, = % DIVES % [4) s, then our full
wavefunction will be:

1 1 1 1
) = T fth + s b @ (500 + S50 0,) (29

If our [¢),, has no effect on the pair state. If it has some effect, that effect
will have to be :

) = 5 s+ 51 ® (| 75 2] 00 l0h + | 55 ¢ mem, ) 120

where ¢ is the very small parameter we defined in the Solar System Limit.

4.8.1 Leading Order

After the pair production takes place one particle {c} will fall in the Black
Hole, and the other {b} will float to infinity where it will start forming the
Hawking Radiation. At this section we will focus on the state of the produced
pair, and we will see that it is entangled in a very specific way. As we are going
to show later, if the state of our pair is the following, Hawking’s conclusion will
be inevitable.

Slice 1:
The full state here will be that of the shell of mass since there is nothing
else on it. We write |¥) = [¢),, .

Slice 2:

As S evolves to S the middle part stretches, as the left and right part stay
them ( are just pushed apart ). As we mentioned several times, this stretching
will lead to correlated pairs. Our full state will be:

B = [y, @ <¢1§ 0), 10, + 5 11, |1>b1) (127)

We now want to compute the entanglement entropy between systems {b}
and M, {c}. First we right the whole system’s density matrix (operator). There
is no entanglement between {b} and M so the density matrix will be,

ﬁCb = |¢>cb <w| < peb = (‘0>c1 |0>b1 + |1>c1 |1>b1) (bl <1‘ c1 <1| + b <0| c1 <0|) =

N =
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1
=5 (10)e, 10)5, b3 (1lex (L1 +10), 10, 51 Ol ey (OF 4 1), (1), 03 (Lo (L + 1), [, b, (Ol (0])
Then we compute the reduced density operator for system {b} :
ﬁb - Trcﬁcb

Now we write it down as in a matrix form for a basis {|0),|1)}. That is :

So now we can easily compute the S¢,; which is :

Py =

ON=
= O

1
s 0 —In2 0
- _ - _ 2 _
Sent = =T [pplnpy) = =T'r [ 0 1 ’ 0 In2 H =
_In2 0
Sewe = —Tr| .2 1, |=In2 (128)
0 -2

Slice 3:

a) The state |¢),, remains the nearly the same, since nothing happens at
its vicinity (locality).

b)Again the stretching will happen at the connector part. This leads to two
facts. First, for the pair by, c;that was created at the earlier step, b; and ¢, are
pushed apart. Second, is that the stretching creates another pair bg, co in its
region. Again here the hole state is given by (...), but we will use the simplified:

) = ¢>M®(j§ 00 00, + 5 11, |1>1,1)®(j§ 00, 00, + 5 I, |1>b2)

(129)
Calculating ,like before, the entanglement of the {b1, b2} with M, {c1,c2} we
get :

Sent = 2In2 (130)

Slice N:
Consequently, the state in a random next slice will be:

S

NG 10}, 10}y, +

1 1 1
0 s, )3 (2100, 100, + - 1>02(|1>b;)®- :
131

) = )
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1 1
L. ® <\/§ |0>CN |0>bN + ﬁ |1>cN |1>bN>

and the entropy of system{by, by, ..., by } with system M, {cy,ca,...,cn}s :
Sent = Nin2 (132)

After a lot of time, when a large number of b particles will have been created,
the B.H. will have shrank to a very small size. At this point there exist two
possible outcomes.

Possibility 1:

As the quanta {b;} collect at infinity, the mass of the hole decreases. The
slicing does not satisfy the niceness conditions N after the point when Mj,pe ~
Mplank because WR < l% is no longer true. We will therefore stop evolving our

P

spacelike slices when this point is reached. The emitted radiation quanta {b;}
have an entanglement S,,; = Nin2 with M, {¢;}.

Definition: We will say that our gravity theory contains remnants if there
exists a set of objects with mass and size less than given bounds

m < Mremnant l < lremnant (133)

but allowing an arbitrarily high entanglement with systems far away from
the object.

Possibility 2:

The black hole evaporates away completely. The quanta {b;} have entangle-
ment entropy Sen: ~ NIn2 # 0 .But since there is nothing left that they are
entangled with, the final state is not described by any quantum wavefunction.
The final state can only be described by a density matrix. Thus it seizes to be
a pure state and becomes a mixed state.

4.8.2 Loss of unitarity

Possibility to is the essence of the paradox. Us we discussed in section
[..] the density operator p remains unchanged under unitary transformations

U pUT = p. Here we started with pure state density matrix and ended up with
a mixed states density matrix,i.e. the density matrix changed. We are forced
to admit that the evolution taking place here was non-Unitary. But the fact
is that we struggled to remain in our solar system limit , to have Hamiltonian
evolution. In all but the last step that was true, since and we can see that
until then our density matrix remained that of a pure state. So at the last
step, when our Black Hole evaporates we loose Unitarity. This is basic principle
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of Quantum Mechanics and if its violated we are forced to conclude that new
physics i needed to describe a Traditional Black Hole’s evaporation. This notion
will become more concrete when we establish the Hawking’s Theorem and see
it as an inevitable outcome.

4.8.3 Deformation of the leading order state (small corrections:definition
and effect):

It is interesting to see if small corrections to the leading order state can
invalidate Hawking’s argument and remove all entanglement between the quanta
{b;} and the M, {c¢;}quanta in the Black Hole. If this happens, there would be
no paradox, since the hole containing M, {c¢;}can vanish, and we will be left
with a pure state of the {b;} quanta, presumably carrying all the information
of the initial matter [1)),, .

Let the state at time step ¢,, be written as | Uz ¢, ¥y (¢,)) where ¥y . denotes
the state of the matter shell that fell in to make the black hole, and also all the
¢ quanta that have been created at earlier steps in the evolution. 1, denotes
all b quanta that have been created in all earlier steps. This state is entangled
between the M, {¢;} and {b; } parts, it is not a product state. We assume nothing
about its detailed structure. In the leading order evolution we would have at
time step tp41:

1 1
[Ware b (tn)) = [Ware, ¥o (tn)) NG 0)c, ., 00, + NG Doy My,

(134)
where the term in box brackets denotes the state of the newly created pair.
Here we will write down the most general case of “small corrections” and

show, that they are not enough to change the state given by the leading order
in a way which will let us escape the final mixed state.We assume that the state
of the “new region” | created by the stretching, is spanned by two vectors:

1 1
() — 7 10)¢,,, 10}, + 7 Desr M (135)
S = 1 0 0 L 1 136

= ﬁl Denin 100, —ﬁl Yenen Wiy (136)

Where we have allowed the occupation number of the mode to be either 0 or
1 and the evolution to give us only one pair per step. We could have taken more
vectors, and enlarged our vector space, but the form of the following argument
would not change. Now we choose a base of orthonormal states ,, for the
M, {c;} and a base of orthonormal states yx,, for the {b;} parts so that:

|\IIM,C7 d)b (tn)> = chmmen (137)

n,m

With Unitary transformation we can get:
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(Ware s (tn)) = Y _Citbixa (138)

Now, us we have seen in the Statistical Quantum Mechanics part, the density
matrix can be written:

pij = |Cil* 655 (139)
and in this case the entanglement entropy will be
Sent = =Y ICiP I (|C:I*) (140)
Where C; are the eigenvalues of p. After step t,41 :
Xi = Xi (141)
i = P 4P s (142)

i.e. 1; evolves to a tensor product of wl(-i) and Sgi). Due to normalization
principle we need:

In leading order we assumed z/ng) = 1;and d}gz) = 0 form the start. Here we
will prove that if the corrections are not of order unity, our state will be that of
the leading order.

The full state we create in accordance with all the above is:

2 2
o+ [ =1 (143)

[War,e, ¥ (tnt1)) = ZCz‘ [7/11(1)5(1) + %(2)5(2)} Xi (144)

now we can write:

[t (tna)) = SO lZa—wEl)xi +5® Zcm@xil = SWAD 45D
(145)
where we have defined the states:
AD =3 CuPy, A® =Y P (146)
and since SMand S® are orthonormal normalization gives:
2 2
A+ a1 (147)
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We have now reached the point in which we will define exactly what we mean
by the term small corrections.

Definition: We will say that corrections are small if:

2
[ (115

if such a limit does not exist, we will say that the corrections are of order
unity

It of importance for the stability of the Hawking Theorem to prove that the
entropy between the {b;} and M, {¢;} grows with every step, if the demand for
small corrections holds, and in fact it grows ~ [n2 as one would expect in the
leading order.Let the entropy of {b;} after the timestep ¢, be Sy. Lets divide
our system to three sub-systems.

Sub-system A)

This system consists of all the {b1, ba, ..., by } quanta created until and at the
timestep t,. As we have assumed, these quanta will not interact with the next
pair produced.

Sub-system B)

This system is made of the contents of the Black Hole until this point,i.e.
M,{c1,¢2,...,cn}. The pair created at the timestep t,4; will interact weakly
with M, {c1,ca,...,cn}. This creates an entanglement which, until the end of
this chapter we will have shown, is so small it won’t affect the leading order
state.

Sub-system C)
This system will be the newly created part at timestep t,1

The entropy of system A ,is S{b} = Sy and it will remain the same after
the timestep ¢,41 . That is, because as we have assumed{by, bo, ..., by }do not
interact with the new pair. The fact that the entropy of {b,ba,...,byx }with
M, {c1,ca,...,cn } increases with each step can be interpreted in to an inequality.
That is:

S{b}+bpy1) > So+1In2 -2, (e 1) (149)
Proving that will suffice. To do that we follow the steps bellow:

Step 1:
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If our assumption for small correction holds, we will show that the entan-
glement entropy between system C and the other systems is smaller than e,
ie.:

S (Cn+1’bn+1) = 7Trp(cn+17bn+1)lnp(cn+17bn+l) <e€ (150)

(we use the symbol = instead of = because of some approximation we will
use in our proof)

Proof:
The pair’s reduced density metric will be:
<A(1) A(1)> <A(1) A(2)>
Plens1,bny1) = < <A(2) A(1)> <A(2) A(2)> ) (151)

This matrix is not diagonal, so to find its the trace of p(c,, ., b,,1) 7P (i1 b
we will diagonalize him. Before that we have:

n+1)

HA<2>H2 - <A(2)‘ A(2)> =2 < ¢ (152)

and consequently
<A(1)‘ A<1>> =1-¢? (153)

from Cauchy-Schwartz inequality:
[z, )] < [l - llyll (154)
where (., .)is the inner product we get:
(A0 A@)| = a0 Ja®] == <e (159
Generally, from a density matrix of the form:
1. - .
pzil—i—a-og (156)
we can go with a unitary transformation to:
1 ~
p=5l+lal-os (157)

and in way diagonalize it. With regards to the above we can write for
entropy:

LaZoayma—zia) (158

1
S =n2+ 5 (1+2[al) In (1+2al) — 5

now with the use of (151), (152) and (153) we can get our pair’s entropy
which will be:

S (ent1,bpt1) = (e —€3) lnﬁ% +0(?) <e, ex1 (159)

i —¢&
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which we will write:
S, << (160)

Until this point it can be seen, that the pair is weakly entangled with the
rest of the system.

Step 2:
From entropy’s subadditivity property, which connects the entropies of two
systems A, B.
S(A+B)>|S(A)+ S (B)| (161)

and if A= {b}and B = p (pair) :

S{b} +p) = S0 —¢ (162)

Step 3:
Now it is enough to show that:

S,

Cn41

>In2—¢ (163)

We right the state (145) in a form which makes computing S, _, easy:

1 1
B 1) (2) il O _ A®
|\IIM7C’¢b (t"+1)> - |:ﬁ |0>0n+1 |0>bn+1 (A +4 ):| +|: |1>Cn+1 |1>bn+1 (A A ):|

The reduced density matrix for ¢, 41 is :

peves = ( HAO+4) (40w a@)y 0 )
0 3 (A = AD)| (AW — A=)
and with the help of (152) and (153):
1
pens = ST+ | Re ((aW] 42))) 0
0 —Re ({(AW] A®)))
and finally :

ey =1n2—2 [Re (<A(1)‘ A<2>>)}2 >In2—2240(%) > in2—c  (164)
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Now using the Strong Subadditivity Theorem that applies to the entropies of
3 systems:
S(A+B)+S(B+C)>S(A)+ S(C) (165)

Where A = {b}, B = b,11, C = c,11. With the help of the above steps
1-3 we can reach the conclusion that:

S{b} +bpt1) = So+1In2 —¢ (166)

5 The Hawking Theorem

We finally have the background to formulate the Hawking Theorem: If

1) The Niceness conditions N give local Hamiltonian evolution

2) A traditional black hole (i.e. one with an information-free horizon) exists in the theory

Then formation and evaporation of such a hole will lead to mixed states/remnants.

Although we have not studied the case of remnants, this Theorem cannot
tell us which of the two possible cases will be our final state. But this shouldn’t
make us worry, since both cases lead to a paradox.

Proof:

A) Consider the metric of the traditional black hole. This black hole admits
a slicing satisfying the niceness conditions N in the domain of interest. By
assumption (i) of the theorem, this implies that we have Solar System physics
in the region around the horizon where particle pairs will be created.

B) In a region with ‘solar system physics’ we can identify and follow the
evolution of an outgoing normal mode with wavelength A\ = ML with p > 1 a
number of order unity. For concreteness, take ¢ = 100. Again using the fact
that we are in the domain of standard solar system physics, we know that the
state in this mode can be expanded in terms of a Fock basis of particles. Thus
when A\ = % we can write:

) mode = @0 |0) + a1 [1) + az2) ... (167)

There are two possibilities:

a)
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D el ~ 1 (168)
i>0
This means that there are particles with wavelength M 100 at the horizon.
This means that the state at the horizon is not the vacuum, and so we do not
have the traditional black hole, and are thus in violation of condition (ii) of the
theorem.

b)
Ml <€, £ <1 (169)
i>0

In this case the state in the mode is the vacuum when A\ = WMO' The require-

ment of solar system physics tells us that the evolution of this vacuum mode
will have to be agree with the leading order evolution of vacuum modes on
this geometry to within some accuracy governed by a small parameter €. Thus
there will exist an e < 1 such that (148) is satisfied by the evolution where
the wavelength grows from \ = % to A ~ M and particle pairs populate this
mode.

C) Since we have the niceness conditions N, the requirement of ‘solar system
physics’ under these conditions forces us to the fact that the particle pairs in
option b) above will be produced in a state close to the state S™) (135).

2
D) The evaporation process produces N ~ (%) pairs before the hole
P

reaches a size ~ [, .At this point we have a large entanglement entropy, for
which we can write

N
Sent > Ean

since ¢ < 1 .Following the argument in the leading order section, we find that
we are forced to mixed states/remnants (i.e. if the Planck sized hole evaporates
away we get a radiation state ‘entangled with nothing’ violating quantum uni-
tarity, and if a Planck sized remnant remains, then we have to admit remnants
with arbitrarily high degeneracy in the theory).

This establishes the Hawking theorem.We have taken care to state Hawk-
ing’s argument in a way that is a ‘theorem’, so that if we wish to bypass the
conclusion that we get mixed states/remnants then we have to violate one of the
assumptions stated in the theorem. Thus we can either argue that the niceness
conditions N need to be supplemented by further conditions (in which case we
have to say what they are), or we have to argue that we do not obtain the
traditional black hole in the theory (i.e. there will not be an information free
horizon).

We emphasize the essential strength of Hawking’s argument in the following
corollary:

Corollary 1: If the state of Hawking radiation has to be a pure state with no

entanglement with the rest of the hole then the evolution of low energy modes
at the horizon has to be altered by Order Unity.
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The proof follows from Theorem 1. A small change in the state at the
horizon changes this entanglement by only a small fraction, and cannot reduce
it to zero. Conversely, if we wish this entanglement to be zero then we have to
change the state of the created pairs to a state that is close to being orthogonal
to the semiclassically expected one.
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