Holographic fluids and integrability

Marios Petropoulos

CPHT - Ecole Polytechnique - CNRS

Aspects of fluid/gravity correspondence - University of Thessaloniki
February 2015
based on works with M. Caldarelli, J. Gath, R. Leigh, A. Mukhopadhyay,
A. Petkou, V. Pozzoli, K. Siampos

Highlights

Foreword

Gravitational self-duality

Weyl self-duality from the bulk to the boundary

Integrability and resummation

Illustration

Outlook

The set up

Framework: holographic fluids as hydrodynamic approximation of finite- T and finite- μ states of a boundary CFT

Original motivation: determine transport coefficients

- Start with some bulk gravitational background related with some boundary fluid in local thermodynamic equilibrium
- Perturb and analyse the response using the bulk-boundary dictionary

Here: pure gravitational backgrounds \longrightarrow neutral boundary fluids

Triggering observation: some exact bulk solutions describe

- non-trivial fluid stationary states
- on non-trivial boundary backgrounds
\longrightarrow enable to probe substantially transport properties [Mukhopadhyay,
Petkou, Petropoulos, Pozzoli, Siampos, '13]
Natural question: can one exhibit more systematically exact bulk Einstein solutions that would produce richer or designed fluid states - and provide more information on transport?
\longrightarrow answer encoded in integrability properties

Integrability

A very general framework
The question rephrased: how to find boundary geometries and combine them with boundary fluid dynamics such as these data integrate into an exact bulk solution ?

Formally: find an integrable phase subspace corresponding to some first integral - effective reduction from $2 n d-$ to 1 st-order equations

- Supergravity: requirement of SUSY \& Bianchi identities (BPS)
- General relativity: requirement of self-duality (in the 70s all integrable systems thought to be SDYM reductions [Ward, '85])
\longrightarrow reduction by half of the independent initial data
The guiding principle here: 4-dim self-duality for $2+1$-dim holographic fluids

Implementation

3 steps

1. Translate bulk self-duality into boundary data
2. Implement an integrable deviation from self-duality
3. Resum the Fefferman-Graham/derivative series expansions into exact bulk Einstein spaces

Output: reconstruction of all known exact spaces from a single piece of boundary data - type D Plebański-Demiański, type D $\mathcal{E} N$ Robinson-Trautman, Kundt...

Highlights

Foreword

Gravitational self-duality

Weyl self-duality from the bulk to the boundary

Integrability and resummation

Illustration

Outlook

The ancestor of holography

The "filling-in" problem - 1982

- A round S^{3} can be "filled-in" by H_{4}

$$
\mathrm{d} s_{H_{4}}^{2}=\frac{\mathrm{d} r^{2}}{1+r^{2}}+r^{2} \mathrm{~d} \Omega_{S^{3}}^{2} \rightarrow r^{2} \mathrm{~d} \Omega_{S^{3}}^{2}
$$

- How to fill-in analytically a Berger sphere?

$$
\mathrm{d} \Omega_{\text {Berger }}^{2}=\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\gamma\left(\sigma^{3}\right)^{2}
$$

(σ^{i} : Maurer-Cartan forms of $S U(2)$)
Answer: Einstein space with self-dual Weyl tensor - quaternionic space [LeBrun' '82; Pedersen ' 86 ; Pedersen, Poon' $90 ;$ Tod '94; Hitchin'95]

Curvature decomposition

Metric $d s^{2}=\delta_{a b} \theta^{a} \theta^{b}$, connection one-form $\omega_{a b}$ and curvature two-form $\mathcal{R}_{a b} \in 6$ of $S O(4) \cong S O(3)_{s d} \otimes S O(3)_{\text {asd }}$

- Reducible under $S O(3)_{\text {sd }}$ and $S O(3)_{\text {asd }}: 6=(3,1) \oplus(1,3)$
- Curvature two-form $(\lambda, \mu \ldots=1,2,3)$

$$
\begin{aligned}
& (3,1) \mathcal{S}_{\lambda}=\frac{1}{2}\left(\mathcal{R}_{0 \lambda}+\frac{1}{2} \epsilon_{\lambda \mu v} \mathcal{R}^{\mu \nu}\right) \\
& (1,3) \mathcal{A}_{\lambda}=\frac{1}{2}\left(\mathcal{R}_{0 \lambda}-\frac{1}{2} \epsilon_{\lambda \mu \nu} \mathcal{R}^{\mu \nu}\right)
\end{aligned}
$$

and similarly for the connection one-form

- Basis for the space of two-forms \wedge^{2}

$$
\begin{aligned}
& (3,1) \phi^{\lambda}=\theta^{0} \wedge \theta^{\lambda}+\frac{1}{2} \epsilon^{\lambda}{ }_{\mu \nu} \theta^{\mu} \wedge \theta^{v} \\
& (1,3) \chi^{\lambda}=\theta^{0} \wedge \theta^{\lambda}-\frac{1}{2} \epsilon^{\lambda}{ }_{\mu \nu} \theta^{\mu} \wedge \theta^{v}
\end{aligned}
$$

More on the Riemann tensor

Atiyah-Hitchin-Singer decomposition of $\mathcal{S}_{\mu}, \mathcal{A}_{\mu}$ ICahen, Debever, Defise '67; Atiyah,
Hitchin, Singer '78]

$$
\begin{aligned}
\mathcal{S}_{\mu} & =\frac{1}{2} W_{\mu \nu}^{+} \phi^{v}+\frac{1}{12} s \phi_{\mu}+\frac{1}{2} C_{\mu \nu}^{+} \chi^{v} \\
\mathcal{A}_{\mu} & =\frac{1}{2} W_{\mu \nu}^{-} \chi^{v}+\frac{1}{12} s \chi_{\mu}+\frac{1}{2} C_{v \mu}^{-} \phi^{v}
\end{aligned}
$$

with $W^{ \pm}$and $C^{ \pm} 3 \times 3$ matrices encoding 19 components of the Riemann and s a function

- $s=R / 2$ scalar curvature $\rightarrow 1$
- $C_{\mu \nu}^{+}=C_{\nu \mu}^{-}$traceless Ricci $\rightarrow 9$
- $W_{\mu \nu}^{+}$self-dual Weyl tensor symmetric and traceless $\rightarrow 5$
- $W_{\mu \nu}^{-}$anti-self-dual Weyl tensor symmetric and traceless $\rightarrow 5$

Quaternionic spaces: $C^{ \pm}=0 \quad s=2 \Lambda \quad W^{-}=0$ or $W^{+}=0 \Leftrightarrow$ Einstein \& Weyl (anti-)self-dual

The case of Lorentzian signature: $S O(4)$ is traded for $S O(3,1)$

- Decomposition into self-dual and anti-self-dual parts possible upon complexification
- W^{+}and W^{-}are complex-conjugate
- $W^{+}=0 \Leftrightarrow W^{-}=0 \Leftrightarrow$ space conformally flat
- The 10 independent components are captured in 5 complex functions $\Psi_{a}, a=0, \ldots, 4$ projections of W onto a null tetrad (physical meaning in terms of geodesic deviation)

The existence of 4 principal null directions, potentially degenerate with higher multiplicity, translates into special algebraic relationships among the Ψ s: Petrov type I, II, III, D, N, O

Highlights

Foreword

Gravitational self-duality

Weyl self-duality from the bulk to the boundary

Integrability and resummation

Illustration

Outlook

Gravity in $d=4$ and the holographic fluid

Set an orthonormal frame $d s^{2}=\eta_{a b} \theta^{a} \theta^{b}(\eta:+\varepsilon++)$

- Choose a gauge with no lapse or shift $\mathrm{ds}^{2}=\frac{\mathrm{d} r^{2}}{\mathrm{k}^{2} r^{2}}+\eta_{\mu v} \theta^{\mu} \theta^{\nu}$
- Expand $\theta^{\mu}(r, x)$ for large r [Fefferman, Graham '85; subtleties: de Haro et al' 'oo]

$$
\theta^{\mu}(r, x)=k r E^{\mu}(x)+\frac{1}{k r} F_{[2]}^{\mu}(x)+\frac{1}{k^{2} r^{2}} F_{[3]}^{\mu}(x)+\cdots
$$

- Read off the 2 independent $2+1$ boundary data: E^{μ} and $F_{[3]}^{\mu}$

$$
\begin{aligned}
& \mathrm{d} s_{\text {bry. }}^{2}=\eta_{\mu v} E^{\mu} E^{v}=g_{\mu v} \mathrm{~d} x^{\mu} \mathrm{d} x^{v} \\
& \mathrm{~T}=\frac{3 k}{8 \pi G} F_{[3]}^{\mu} e_{\mu}=T^{\mu}{ }_{v} E^{v} \otimes e_{\mu}
\end{aligned}
$$

these allow for the Hamiltonian bulk reconstruction

Bulk Weyl self-duality and its boundary manifestation

$$
8 \pi G k^{2} T_{\mu \nu} \pm(i) C_{\mu \nu}=0
$$

with $C_{\mu v}$ the components of the boundary Cotton
Key property: C and T are

- traceless
- conserved

Away from the self-dual point so is

$$
T_{\mu v}^{\mathrm{ref} \pm}=T^{\mu v} \pm \frac{(i)}{8 \pi G k^{2}} C^{\mu v} \neq 0
$$

reflecting $W_{\mu v}^{ \pm}=\frac{8 \pi G}{k^{2} r^{3}} T_{\mu v}^{\text {ref } \pm}+\cdots \neq 0$

Highlights

```
Foreword
Gravitational self-duality
Weyl self-duality from the bulk to the boundary
```

Integrability and resummation

Illustration

Outlook

The question

Using FG expansion any reasonable boundary data $g_{\mu v}$ and $T_{\mu \nu}$ allow to reconstruct a bulk Einstein space

- neither necessarily regular
- nor generally exact

Given a boundary geometry $\mathrm{ds}_{\text {bry. }}^{2}$ can one determine

- the conditions it should satisfy
- the stress tensor it should be accompanied with for the expansion to be exactly resummable?

The answer

The Lorentzian-signature $d s_{b r y .}^{2}$. must admit 2 symmetric, traceless and conserved rank-2 tensors $T^{\text {ref土 }}$ related by complex conjugation The pattern: scan classes of $\mathrm{d} s_{\text {bry. }}^{2}$ admitting exact $T^{\text {ref } \pm}$ and

- further impose on $d s_{\text {bry. }}^{2}$ the condition

$$
\begin{equation*}
\mathrm{C}=8 \pi G k^{2} \mathrm{Im} \mathrm{~T}^{\mathrm{ref+}} \tag{C}
\end{equation*}
$$

- build the bulk with the resulting $\mathrm{d} s_{\text {bry. }}^{2}$ and the stress tensor

$$
\begin{equation*}
\mathrm{T}=\mathrm{Re}^{\mathrm{ref}+} \tag{T}
\end{equation*}
$$

1 piece of bry. data is used - subject Eq. (C), accompanied with (T)

The reference tensors $T^{r e f \pm}$

Integrability in Einstein spaces is tight to Petrov types D, N, O

- n principal null directions of multiplicity m with $n m=4$
- null shear-free geodesic congruences
$\Longrightarrow W^{ \pm}$are remarkably simple and so must be $T^{\text {ref } \pm}$
Boundary geometries expected to lead to resummable series should
- either possess complex-conjugate time-like geodesic congruences associated with perfect-fluid-form $T^{\text {ref土 }}$
- or admit null congruences associated with pure-radiation $T^{r e f \pm}$

Remarks

On conformal perfect fluids with some time-like velocity field u

- $\mathrm{T}^{\text {perf }}=p\left(3 \mathrm{u}^{2}+\mathrm{d} s_{\text {bry. }}^{2}\right)$
- Euler equations $\left\{\begin{array}{l}\nabla_{u} \log p+3 / 2 \Theta=0 \\ \nabla_{\perp} \log p+3 \mathrm{a}=0\end{array}\right.$
\Longrightarrow geodesic and expansionless u solve them with constant p
On the actual stress tensor $T=R e T^{r e f+}$
- Not expected to be perfect: $T=T^{\text {perf }}+\Pi$
- The fluid congruence u is read off from the perfect piece
- $T^{\text {perf }}$ and Π are not separately conserved

The series expansion

Using the boundary data $d s_{b r y .}^{2}$. and T as well as C and u the partly resummed derivative expansion reads [Bhattacharyga et al '08; Caldarelli e tal 12$]$

$$
\begin{align*}
& d s_{\text {bulk }}^{2}=-2 u(d r+r A)+r^{2} k^{2} d s_{b r y .}^{2}+\frac{1}{k^{2}} \Sigma \\
& \quad+\frac{u^{2}}{\rho^{2}}\left(\frac{8 \pi G T_{\lambda \mu} u^{\lambda} u^{\mu}}{k^{2}} r+\frac{C_{\lambda \mu} u^{\lambda} \eta^{\mu v \sigma} \omega_{v \sigma}}{2 k^{6}}\right)+\text { h.d. } \tag{R}
\end{align*}
$$

- $A=a-\frac{\Theta}{2} u \quad \omega=\frac{1}{2}(d u+u \wedge a)$
- $\Sigma=-2 u \nabla_{v} \omega^{v}{ }_{\mu} d x^{\mu}-\omega_{\mu}{ }^{\lambda} \omega_{\lambda v} d x^{\mu} d x^{v}-$ $\frac{1}{2} u^{2}\left(R+4 \nabla_{\mu} A^{\mu}-2 A_{\mu} A^{\mu}\right)$
- $\rho^{2}=r^{2}+\frac{1}{2 k^{4}} \omega_{\mu v} \omega^{\mu v} \quad \eta^{\mu v \sigma}=\epsilon^{\mu v \sigma} / \sqrt{-g_{b r r y}}$.

Using Eqs. (C) and (T) the first terms of (R) are exact Einstein

Highlights

```
Foreword
Gravitational self-duality
Weyl self-duality from the bulk to the boundary
Integrability and resummation
```

Illustration

Outlook

Examples without vorticity

$$
\begin{equation*}
d s_{b r y .}^{2}=-d t^{2}+\frac{2}{k^{2} P^{2}} d \zeta d \bar{\zeta} \tag{nv}
\end{equation*}
$$

$P(t, \zeta, \bar{\zeta})$ real \& a priori arbitrary - define $K=2 P^{2} \partial_{\zeta} \partial_{\bar{\zeta}} \log P$

- Cotton-tensor components $C_{\mu v}$:

$$
\left(\begin{array}{ccc}
0 & -\frac{k^{2}}{2} \partial_{\zeta} K & \frac{\kappa^{2}}{2} \partial_{\bar{\xi}} K \\
-\frac{k^{2}}{2} \partial_{\bar{\xi}} K & -\partial_{t}\left(\frac{\partial \partial_{\bar{\xi}}^{P} P}{P}\right) & 0 \\
\frac{k^{2}}{2} \partial_{\bar{\zeta}} K & 0 & \partial_{t}\left(\frac{\partial_{\bar{\zeta}}^{2} P}{P}\right)
\end{array}\right)
$$

- Complex-conjugate geodesic \& expansionless congruences $\mathrm{u}^{+}=-\mathrm{d} t+\frac{\alpha^{+}}{P^{2}} \mathrm{~d} \zeta$ and c.c.: $\alpha^{ \pm}(t, \zeta, \bar{\zeta})$ satisfy

$$
\begin{equation*}
k^{2} P \partial_{\zeta} \alpha^{-}=2\left(k^{2} \alpha^{-} \partial_{\zeta} P+\partial_{t} P\right) \quad \text { plus c.c. } \tag{h}
\end{equation*}
$$

- With M constant $T^{\text {ref } \pm}=\frac{M k^{2}}{8 \pi G}\left(3\left(u^{ \pm}\right)^{2}+d s_{\text {bry. }}^{2}\right)$ is conserved
- Requiring $C=8 \pi G k^{2} I m T^{\text {ref }+}$ sets 1 constraint on P

$$
\begin{equation*}
\left(\partial_{\zeta} K\right)^{2}+6 M \partial_{t}\left(\frac{\partial_{\zeta}^{2} P}{P}\right)=0 \tag{D}
\end{equation*}
$$

plus 1 constraint on $\alpha^{-} \partial_{\bar{\zeta}} K=3 M k^{2} \frac{\alpha^{-}}{P^{2}}-$ combined with (h) gives

$$
\begin{equation*}
P^{2} \partial_{\bar{\zeta}} \partial_{\zeta} K-6 M \partial_{t} \log P=0 \tag{E}
\end{equation*}
$$

(plus c.c.)

The stress tensor T

- Using $T=\operatorname{Re} T^{\text {ref+ }}$ one finds the non-perfect $8 \pi G / k^{2} T$

$$
\left(\begin{array}{ccc}
2 M & -\frac{1}{2 k^{2}} \partial_{\zeta} K & -\frac{1}{2 k^{2}} \partial_{\bar{\zeta}} K \\
-\frac{1}{2 k^{2}} \partial_{\zeta} K-\frac{1}{k^{4}} \partial_{t}\left(\frac{\partial_{\zeta}^{2} P}{P}\right) & \frac{M}{k^{2} P^{2}} \\
-\frac{1}{2 k^{2}} \partial_{\bar{\zeta}} K & \frac{M}{k^{2} P^{2}} & -\frac{1}{k^{4}} \partial_{t}\left(\frac{\partial_{\zeta}^{2} P}{P}\right)
\end{array}\right)
$$

- The perfect part is $T^{\text {perf }}=\frac{M k^{2}}{8 \pi G}\left(3 u^{2}+d s_{\text {bry. }}^{2}\right)$ with $u=-d t$ a geodesic expanding congruence with zero shear and zero vorticity - not conserved

Resummation: using $d s_{b r y,}^{2} C, T$ and u in Eq. (R)

$$
\begin{equation*}
d s_{\text {bulk }}^{2}=2 d t d r-2 H d t^{2}+2 \frac{r^{2}}{p^{2}} d \zeta d \bar{\zeta}+h . d \tag{RT}
\end{equation*}
$$

with

$$
2 H=K+2 r \partial_{t} \log P-\frac{2 M}{r}+k^{2} r^{2}
$$

The displayed part without h.d. is

- exact Einstein thanks to Eq. (E) \rightarrow integrability condition
- Petrov type D thanks to Eq. (D) $\Leftrightarrow 3 \Psi_{2} \Psi_{4}=2 \Psi_{3}^{2}$

Robinson-Trautman type D class

- u $\longleftarrow 2$ multiplicity-2 bulk principle null directions
- $u_{ \pm} \longleftarrow 2 / 4$ bulk tetrad elements

Alternative: same boundary Eq. (nv) $d s_{b r y .}^{2}=-d t^{2}+\frac{2}{k^{2} P^{2}} d \zeta d \bar{\zeta}$

- Pure-radiation reference tensor

$$
4 \pi G k^{2} \mathrm{~T}^{\mathrm{ref}+}=F(t, \zeta) \mathrm{d} \zeta^{2}
$$

arbitrary $F(t, \zeta) \Rightarrow \mathrm{T}^{\text {ref } \pm}$ conserved

- C, T, u - resummation

Robinson-Trautman type N class
$u \longleftarrow 1$ multiplicity-4 bulk principle null direction

Examples with vorticity

$$
\begin{equation*}
d s_{b r y,}^{2}=-(d t-b)^{2}+\frac{2}{k^{2} P^{2}} d \zeta d \bar{\zeta} \tag{nv}
\end{equation*}
$$

P real function and $\mathrm{b}=b_{\zeta} \mathrm{d} \zeta+b_{\bar{\zeta}} \mathrm{d} \bar{\zeta}$ a real form - a priori arbitrary

- Impose $\exists 1$ Killing $\Rightarrow 2$ nd one [Mukhopadhyay et al '13]
- Impose $\exists 2$ c.c. geodesic expanding congruences $u_{ \pm} \Rightarrow$ perfect-fluid conserved $\mathrm{T}^{\text {ref } \pm}$ (non-constant pressure)
- Impose $C=8 \pi G k^{2} \operatorname{Im} T^{\text {ref+ }} \Rightarrow$ solve for P and $b \Rightarrow d s_{b r y}^{2}$.
- Extract $T=R e T^{\text {ref+ }}=T^{\text {perf }}+\Pi$
- $T^{\text {perf }}$ generally non-conserved - aligned with $\mathrm{u}=-\mathrm{d} t+\mathrm{b}$ shearless, expanding geodesic congruence with vorticity
- Resum - Eq. (R): exact Petrov type D Plebański-Demiański familly (mass, rotation, nut, "twist", acceleration)

Highlights

Foreword

Gravitational self-duality

Weyl self-duality from the bulk to the boundary

Integrability and resummation

Illustration

Outlook

Summary: bottom-up approach and integrability

- Idea: shape $2+1$-dim $d s_{b r y .}^{2}$ and T for exact ascendent
- Pattern: design conserved $T^{r e f \pm}$ of perfect or radiation conformal-fluid type
- Output:
- Integration achieved: limited derivative expansion is exact Einstein (Plebański-Demiański, Robinson-Trautman, Kundt...)
- Remarkable form of $T^{\text {ref } \pm} \Rightarrow$ special form of $W^{ \pm}$: algebraic Petrov type (Kerr, Taub-NUT, C-metric, pp-waves...)
- Generalizable to Einstein-Maxwell...

Consequence for holographic fluids: transport properties

- Exact solutions provide already rich information on transport coefficients (a fortiori when T is non-perfect) ${ }_{\text {IMulkhopadhyay etal }} 13$; de Freitas, Reall '14; Bakas, Skenderis '14]
- Perturbation of exact Einstein spaces as a deeper probe for transport can be made more systematic - captured in the known h.d. terms of the $d s_{\text {bulk }}^{2}$ expansion

Highlights

Illustration of LeBrun's filling-in

Gravity, holography and the Fefferman-Graham expansion

The Robinson-Trautman type N class

A classic example

Bianchi IX AdS Schwarzschild-Taub-NUT

- Einstein space with $\Lambda=-3 k^{2}$, mass M, nut charge n

$$
\begin{aligned}
\mathrm{d} s^{2}= & \frac{\mathrm{d} r^{2}}{V(r)}+\left(r^{2}-n^{2}\right)\left(\mathrm{d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \varphi^{2}\right) \\
& +V(r)\left(\mathrm{d} \tau+4 n \sin ^{2} \frac{\vartheta}{2} \mathrm{~d} \varphi\right)^{2} \\
V(r)=\frac{1}{r^{2}-n^{2}}[& \left.r^{2}+n^{2}-2 M r+k^{2}\left(r^{4}-6 n^{2} r^{2}-3 n^{4}\right)\right]
\end{aligned}
$$

- Weyl (anti-)self-dual (i.e. quaternionic) iff

$$
M= \pm n\left(1-4 k^{2} n^{2}\right)
$$

\Longleftrightarrow no conical singularity at $r=n$

The boundary geometry: $d s^{2} \underset{r \rightarrow \infty}{\rightarrow} \frac{d r^{2}}{k^{2} r^{2}}+k^{2} r^{2} d s_{b r y}^{2}$.

$$
\begin{aligned}
\mathrm{d} s_{\text {bry. }}^{2} & =\left(\mathrm{d} \tau+4 n \sin ^{2} \frac{\vartheta}{2} \mathrm{~d} \varphi\right)^{2}+\frac{1}{k^{2}}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \varphi^{2}\right) \\
& =\frac{1}{k^{2}}\left(\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}\right)+4 n^{2}\left(\sigma^{3}\right)^{2}
\end{aligned}
$$

with $\tau=-2 n(\psi+\varphi)$ and $0 \leq \vartheta \leq \pi, 0 \leq \varphi \leq 2 \pi, 0 \leq \psi \leq 4 \pi$

$$
\left\{\begin{array}{l}
\sigma^{1}=\sin \vartheta \sin \psi \mathrm{d} \varphi+\cos \psi \mathrm{d} \vartheta \\
\sigma^{2}=\sin \vartheta \cos \psi \mathrm{d} \varphi-\sin \psi \mathrm{d} \vartheta \\
\sigma^{3}=\cos \vartheta \mathrm{d} \varphi+\mathrm{d} \psi
\end{array}\right.
$$

Conclusion: $\mathrm{d} s_{\text {bry. }}^{2}$ is a Berger sphere

Highlights

Illustration of LeBrun's filling-in

Gravity, holography and the Fefferman-Graham expansion

The Robinson-Trautman type N class

Gravity in $d=4$

Palatini formulation and $3+1$ split $\left[\right.$ LLeigh, Pethou' ${ }^{\text {'07; }}$, Mansi, Petkou, Tagliabue' ${ }^{\text {'08] }}$

$$
I_{E H}=-\frac{1}{32 \pi G} \int_{\mathcal{M}} \epsilon_{a b c d}\left(\mathcal{R}^{a b}+\frac{k^{2}}{2} \theta^{a} \wedge \theta^{b}\right) \wedge \theta^{c} \wedge \theta^{d}
$$

θ^{a} an orthonormal frame $d s^{2}=\eta_{a b} \theta^{a} \theta^{b}(\eta:+\varepsilon++)$
gauge: no lapse, no shift

- Coframe: $\theta^{r}=\frac{\mathrm{d} r}{k r}$ and θ^{μ}

$$
\mathrm{d} s^{2}=\frac{\mathrm{d} r^{2}}{k^{2} r^{2}}+\eta_{\mu \nu} \theta^{\mu} \theta^{v}
$$

- Connection: $\omega^{r \mu}=\mathcal{K}^{\mu}$ and $\omega^{\mu \nu}=-\epsilon^{\mu \nu \rho} \mathcal{B}_{\rho}$ or (a)sd combination $1 / 2\left(\mathcal{K}^{\mu} \pm \mathcal{B}^{\mu}\right)$ for $\varepsilon=+$

Hamiltonian evolution of $\theta^{\mu}, \mathcal{K}^{\mu}, \mathcal{B}_{\rho}$ from boundary data - what are the independent boundary data? Answer in asymptotically AdS:
Fefferman-Graham expansion for large r IEefferman, Graham' 85 ; subbeleties: de Haro,
Skenderis, Solodukhin, '00]

$$
\begin{aligned}
\theta^{\mu}(r, x) & =k r E^{\mu}(x)+\frac{1}{k r} F_{[2]}^{\mu}(x)+\frac{1}{k^{2} r^{2}} F_{[3]}^{\mu}(x)+\cdots \\
\mathcal{K}^{\mu}(r, x) & =-k^{2} r E^{\mu}(x)+\frac{1}{r} F_{[2]}^{\mu}(x)+\frac{2}{k r^{2}} F_{[3]}^{\mu}(x)+\cdots \\
\mathcal{B}^{\mu}(r, x) & =B^{\mu}(x)+\frac{1}{k^{2} r^{2}} B_{[2]}^{\mu}(x)+\cdots
\end{aligned}
$$

Independent $2+1$ boundary data: E^{μ} and $F_{[3]}^{\mu}$

The holographic fluid

Interpretation of the boundary data

- E^{μ} : boundary orthonormal coframe - allows to determine

$$
\mathrm{d} s_{\text {bry. }}^{2}=\eta_{\mu v} E^{\mu} E^{v}=g_{\mu v} \mathrm{~d} x^{\mu} \mathrm{d} x^{v}
$$

- $F_{[2]}^{\mu}=-1 / 2 k^{2} S^{\mu v} e_{V}$: Schouten
- $B_{[2]}^{\mu}=1 / 2 k^{2} C^{\mu v} e_{v}$: Cotton
- $F_{[3]}^{\mu}$: stress current one-form - allows to construct the vev of the boundary stress tensor

$$
\mathrm{T}=\frac{3 k}{8 \pi G} F_{[3]}^{\mu} e_{\mu}=T_{v}^{\mu} E^{v} \otimes e_{\mu}
$$

Macroscopic object carrying microscopic data from the bulk

Highlights

Illustration of LeBrun's filling-in

Gravity, holography and the Fefferman-Graham expansion

The Robinson-Trautman type N class

$$
d s_{b r y .}^{2}=-d t^{2}+\frac{2}{k^{2} P^{2}} d \zeta d \bar{\zeta}
$$

Now pure-radiation reference tensor

$$
4 \pi G k^{2} T^{r e f+}=F(t, \zeta) d \zeta^{2}
$$

arbitrary $F(t, \zeta) \Rightarrow T^{r e f \pm}$ conserved

- Requiring $C=8 \pi G k^{2} \operatorname{Im} T^{\text {reft }}$ sets 1 constraint on P

$$
\begin{equation*}
\partial_{\zeta} K=0 \tag{N}
\end{equation*}
$$

plus

$$
\begin{equation*}
\partial_{t}\left(\frac{\partial_{\zeta}^{2} P}{P}\right)+F(t, \zeta)=0 \tag{F}
\end{equation*}
$$

(plus c.c.)

- Eq. (N) sets $K=K(t)$ and determines $P(t, \zeta, \bar{\zeta})$
- Eq. (F) determines $F(t, \zeta)$ - no constraint
- Using $T=R e T^{r e f+}$ one finds the non-perfect stress tensor

$$
8 \pi G k^{2} \mathrm{~T}=F(t, \zeta) \mathrm{d} \bar{\zeta}^{2}+\bar{F}(t, \bar{\zeta}) \mathrm{d} \bar{\zeta}^{2}
$$

Using $d s_{b r y .}^{2}, C, T$ and $u=-d t$ in Eq. (R) gives (RT) with $M=0$

- Petrov type N thanks to

$$
\begin{array}{r}
M=0 \Leftrightarrow \Psi_{2}=0 \\
(N) \Leftrightarrow \Psi_{3}=0
\end{array}
$$

- Always exact Einstein

Note: $P(t, \zeta, \bar{\zeta})=\frac{1+\varepsilon / 2 g \bar{g}}{\sqrt{2 f \partial_{\zeta} g \partial_{\bar{\xi}} \bar{g}}}$ with $\varepsilon=0, \pm 1$ and $f(t), g(t, \zeta)$ arbitrary functions - $F(t, \zeta)$ expressed in terms of $g(t, \zeta)$ and its derivatives

Robinson-Trautman type N class
$\mathrm{u} \longleftarrow 1$ multiplicity-4 bulk principle null direction

