Holographic fluids and integrability

Marios Petropoulos

CPHT – Ecole Polytechnique – CNRS

Aspects of fluid/gravity correspondence - University of Thessaloniki

February 2015

based on works with M. Caldarelli, J. Gath, R. Leigh, A. Mukhopadhyay, A. Petkou, V. Pozzoli, K. Siampos

Foreword

Gravitational self-duality

Weyl self-duality from the bulk to the boundary

Integrability and resummation

Illustration

Outlook

The set up

<u>*Framework:*</u> holographic fluids as hydrodynamic approximation of finite-T and finite-µ states of a boundary CFT

Original motivation: determine transport coefficients

- Start with some bulk gravitational background related with some boundary fluid in local thermodynamic equilibrium
- Perturb and analyse the response using the bulk-boundary dictionary

Here: pure gravitational backgrounds \rightarrow *neutral boundary fluids*

Triggering observation: some exact bulk solutions describe

- non-trivial fluid stationary states
- on non-trivial boundary backgrounds

 \longrightarrow enable to probe substantially transport properties [Mukhopadhyay, Petkou, Petropoulos, Pozzoli, Siampos, '13]

Natural question: can one exhibit more systematically exact bulk *Einstein* solutions that would produce richer or designed fluid states – and provide more information on transport?

 \longrightarrow answer encoded in integrability properties

Integrability

A very general framework

The question rephrased: how to find *boundary geometries* and combine them with *boundary fluid dynamics* such as these data integrate into an *exact bulk solution* ?

Formally: find an integrable phase subspace corresponding to some first integral – effective reduction from 2nd- to 1st-order equations

- Supergravity: requirement of SUSY & Bianchi identities (BPS)
- General relativity: requirement of self-duality (in the 70s all integrable systems thought to be SDYM reductions [Ward, '85])
- \longrightarrow reduction by half of the independent initial data

The guiding principle here: 4-dim self-duality for 2 + 1-dim holographic fluids

Implementation

3 steps

- 1. Translate bulk self-duality into boundary data
- 2. Implement an integrable deviation from self-duality
- 3. Resum the Fefferman–Graham/derivative series expansions into exact bulk Einstein spaces

Output: reconstruction of all known exact spaces from a single piece of boundary data – type D Plebański–Demiański, type D & N Robinson–Trautman, Kundt...

Foreword

Gravitational self-duality

Weyl self-duality from the bulk to the boundary

Integrability and resummation

Illustration

Outlook

The ancestor of holography

The "filling-in" problem – 1982

• A round S^3 can be "filled-in" by H_4

$$\mathsf{d}s^2_{H_4} = \frac{\mathsf{d}r^2}{1+r^2} + r^2 \mathsf{d}\Omega^2_{\mathcal{S}^3} \to r^2 \mathsf{d}\Omega^2_{\mathcal{S}^3}$$

How to fill-in analytically a Berger sphere?

$$\mathrm{d}\Omega_{\mathrm{Berger}}^{2}=\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\gamma\left(\sigma^{3}\right)^{2}$$

(σ^i : Maurer–Cartan forms of SU(2))

Answer: Einstein space with self-dual Weyl tensor – quaternionic space [LeBrun '82; Pedersen '86; Pedersen, Poon '90; Tod '94; Hitchin '95]

Curvature decomposition

Metric $ds^2 = \delta_{ab}\theta^a\theta^b$, connection one-form ω_{ab} and curvature two-form $\mathcal{R}_{ab} \in \mathbf{6}$ of $SO(4) \cong SO(3)_{sd} \otimes SO(3)_{asd}$

- ▶ Reducible under $SO(3)_{sd}$ and $SO(3)_{asd}$: **6** = (**3**, **1**) \oplus (**1**, **3**)
- ► Curvature two-form $(\lambda, \mu ... = 1, 2, 3)$ (3, 1) $S_{\lambda} = \frac{1}{2} (\mathcal{R}_{0\lambda} + \frac{1}{2} \epsilon_{\lambda\mu\nu} \mathcal{R}^{\mu\nu})$ (1, 3) $\mathcal{A}_{\lambda} = \frac{1}{2} (\mathcal{R}_{0\lambda} - \frac{1}{2} \epsilon_{\lambda\mu\nu} \mathcal{R}^{\mu\nu})$

and similarly for the connection one-form

 \blacktriangleright Basis for the space of two-forms \wedge^2

(3,1) $\phi^{\lambda} = \theta^{0} \wedge \theta^{\lambda} + \frac{1}{2} \epsilon^{\lambda}{}_{\mu\nu} \theta^{\mu} \wedge \theta^{\nu}$ (1,3) $\chi^{\lambda} = \theta^{0} \wedge \theta^{\lambda} - \frac{1}{2} \epsilon^{\lambda}{}_{\mu\nu} \theta^{\mu} \wedge \theta^{\nu}$

More on the Riemann tensor

Atiyah–Hitchin–Singer decomposition of S_{μ} , A_{μ} [Cahen, Debever, Defise '67; Atiyah, Hitchin, Singer '78]

$$\begin{array}{rcl} \mathcal{S}_{\mu} & = & \frac{1}{2} \mathcal{W}_{\mu\nu}^{+} \phi^{\nu} + \frac{1}{12} s \phi_{\mu} + \frac{1}{2} \mathcal{C}_{\mu\nu}^{+} \chi^{\nu} \\ \mathcal{A}_{\mu} & = & \frac{1}{2} \mathcal{W}_{\mu\nu}^{-} \chi^{\nu} + \frac{1}{12} s \chi_{\mu} + \frac{1}{2} \mathcal{C}_{\nu\mu}^{-} \phi^{\nu} \end{array}$$

with W^{\pm} and C^{\pm} 3 \times 3 matrices encoding 19 components of the Riemann and s a function

• s = R/2 scalar curvature $\rightarrow 1$

•
$$C^+_{\mu
u} = C^-_{
u\mu}$$
 traceless Ricci $ightarrow$ 9

- $W_{\mu\nu}^+$ self-dual Weyl tensor symmetric and traceless $\rightarrow 5$
- $W^-_{\mu\nu}$ anti-self-dual Weyl tensor symmetric and traceless $\rightarrow 5$

Quaternionic spaces: $C^{\pm} = 0$ $s = 2\Lambda$ $W^{-} = 0$ or $W^{+} = 0 \Leftrightarrow$ *Einstein & Weyl (anti-)self-dual*

The case of Lorentzian signature: SO(4) *is traded for* SO(3, 1)

- Decomposition into self-dual and anti-self-dual parts possible upon complexification
- W^+ and W^- are complex-conjugate
 - $W^+ = 0 \Leftrightarrow W^- = 0 \Leftrightarrow$ space conformally flat
 - ► The 10 independent components are captured in 5 complex functions Ψ_a, a = 0,..., 4 projections of W onto a null tetrad (physical meaning in terms of geodesic deviation)

The existence of 4 principal null directions, potentially degenerate with higher multiplicity, translates into special algebraic relationships among the Ψ s: Petrov type I, II, III, D, N, O

Foreword

Gravitational self-duality

Weyl self-duality from the bulk to the boundary

Integrability and resummation

Illustration

Outlook

Gravity in d = 4 *and the holographic fluid*

Set an orthonormal frame $ds^2 = \eta_{ab}\theta^a\theta^b$ ($\eta : +\varepsilon + +$)

- Choose a gauge with no lapse or shift $ds^2 = \frac{dr^2}{k^2r^2} + \eta_{\mu\nu}\theta^{\mu}\theta^{\nu}$
- Expand $\theta^{\mu}(r, x)$ for large r [Fefferman, Graham '85; subtleties: de Haro *et al* '00]

$$\theta^{\mu}(r,x) = kr E^{\mu}(x) + \frac{1}{kr} F^{\mu}_{[2]}(x) + \frac{1}{k^2 r^2} F^{\mu}_{[3]}(x) + \cdots$$

▶ Read off the 2 independent 2 + 1 boundary data: E^{μ} and $F^{\mu}_{[3]}$

$$\mathsf{d} s^2_{\mathsf{bry.}} = \eta_{\mu
u} E^\mu E^
u = g_{\mu
u} \mathsf{d} x^\mu \mathsf{d} x^
u$$
 $\mathsf{T} = rac{3k}{8\pi G} F^\mu_{[\mathbf{3}]} e_\mu = T^\mu_{
u} E^
u \otimes e_\mu$

these allow for the Hamiltonian bulk reconstruction

Bulk Weyl self-duality and its boundary manifestation

Expanding $W^{\pm}=0$ leads to [Leigh, Petkou '07; de Haro '08; Mansi et al '08; Miskovic, Olea '09]

 $8\pi Gk^2 T_{\mu\nu} \pm (i) C_{\mu\nu} = 0$

with $C_{\mu\nu}$ the components of the boundary Cotton

Key property: C and T are

- traceless
- conserved

Away from the self-dual point so is

$$T^{\mathsf{ref}\pm}_{\mu\nu}=\,T^{\mu\nu}\pm\frac{(i)}{8\pi Gk^2}C^{\mu\nu}\neq 0$$

reflecting $W_{\mu\nu}^{\pm} = \frac{8\pi G}{k^2 r^3} T_{\mu\nu}^{\text{ref}\pm} + \cdots \neq 0$

Foreword

Gravitational self-duality

Weyl self-duality from the bulk to the boundary

Integrability and resummation

Illustration

Outlook

The question

Using FG expansion any reasonable boundary data $g_{\mu\nu}$ and $T_{\mu\nu}$ allow to reconstruct a bulk Einstein space

- neither necessarily regular
- nor generally exact

Given a boundary geometry ds_{bry}^2 can one determine

- the conditions it should satisfy
- the stress tensor it should be accompanied with

for the expansion to be exactly resummable?

The answer

The Lorentzian-signature $ds_{bry.}^2$ must admit 2 symmetric, traceless and conserved rank-2 tensors $T^{ref\pm}$ related by complex conjugation The pattern: scan classes of $ds_{bry.}^2$ admitting exact $T^{ref\pm}$ and

• further impose on ds_{bry}^2 the condition

$$C = 8\pi G k^2 \, \text{Im} \mathsf{T}^{\text{ref}+} \tag{C}$$

• build the bulk with the resulting $ds_{bry.}^2$ and the stress tensor

$$\mathsf{T} = \mathsf{Re}\mathsf{T}^{\mathsf{ref}+} \tag{T}$$

1 piece of bry. data is used – subject Eq. (C), accompanied with (T)

The reference tensors $T^{ref\pm}$

Integrability in Einstein spaces is tight to Petrov types D, N, O

- *n* principal null directions of multiplicity *m* with nm = 4
- null shear-free geodesic congruences
- $\implies W^{\pm}$ are remarkably simple and so must be T^{ref\pm}

Boundary geometries expected to lead to resummable series should

- ► either possess complex-conjugate time-like geodesic congruences associated with perfect-fluid-form T^{ref±}
- or admit null congruences associated with pure-radiation $T^{ref\pm}$

Remarks

On conformal perfect fluids with some time-like velocity field u

•
$$T^{\text{perf}} = p \left(3u^2 + ds_{\text{bry.}}^2 \right)$$

• Euler equations $\begin{cases} \nabla_u \log p + 3/2 \Theta = 0 \\ \nabla_\perp \log p + 3a = 0 \end{cases}$

 \implies geodesic and expansionless u solve them with constant p

On the actual stress tensor $T = ReT^{ref+}$

- ▶ Not expected to be perfect: $T = T^{perf} + \Pi$
- ► The fluid congruence u is read off from the perfect piece
- T^{perf} and Π are not separately conserved

The series expansion

Using the boundary data $ds_{bry.}^2$ and T as well as C and u the partly <u>resummed</u> derivative expansion reads [Bhattacharyya et al '08; Caldarelli et al '12]

$$ds_{bulk}^{2} = -2u(dr + rA) + r^{2}k^{2}ds_{bry.}^{2} + \frac{1}{k^{2}}\Sigma + \frac{u^{2}}{\rho^{2}}\left(\frac{8\pi GT_{\lambda\mu}u^{\lambda}u^{\mu}}{k^{2}}r + \frac{C_{\lambda\mu}u^{\lambda}\eta^{\mu\nu\sigma}\omega_{\nu\sigma}}{2k^{6}}\right) + h.d.$$
(R)

$$A = a - \frac{\Theta}{2}u \qquad \omega = \frac{1}{2}(du + u \wedge a)$$

$$\Sigma = -2u\nabla_{\nu}\omega^{\nu}{}_{\mu}dx^{\mu} - \omega_{\mu}{}^{\lambda}\omega_{\lambda\nu}dx^{\mu}dx^{\nu} - \frac{1}{2}u^{2}\left(R + 4\nabla_{\mu}A^{\mu} - 2A_{\mu}A^{\mu}\right)$$

$$\rho^{2} = r^{2} + \frac{1}{2k^{4}}\omega_{\mu\nu}\omega^{\mu\nu} \qquad \eta^{\mu\nu\sigma} = \epsilon^{\mu\nu\sigma}/\sqrt{-g_{bry.}}$$

Using Eqs. (C) and (T) the first terms of (R) are exact Einstein

Foreword

Gravitational self-duality

Weyl self-duality from the bulk to the boundary

Integrability and resummation

Illustration

Outlook

Examples without vorticity

$$ds_{bry.}^2 = -dt^2 + \frac{2}{k^2 P^2} d\zeta d\bar{\zeta}$$
 (nv)

 $P(t, \zeta, \overline{\zeta}) \text{ real } \& \text{ a priori arbitrary} - \text{define } K = 2P^2 \partial_{\zeta} \partial_{\overline{\zeta}} \log P$ $\blacktriangleright \text{ Cotton-tensor components } C_{\mu\nu}:$

$$\begin{pmatrix} 0 & -\frac{k^2}{2}\partial_{\zeta}K & \frac{k^2}{2}\partial_{\zeta}K \\ -\frac{k^2}{2}\partial_{\zeta}K & -\partial_t \left(\frac{\partial_{\zeta}^2P}{P}\right) & 0 \\ \frac{k^2}{2}\partial_{\zeta}K & 0 & \partial_t \left(\frac{\partial_{\zeta}^2P}{P}\right) \end{pmatrix}$$

• Complex-conjugate geodesic & expansionless congruences $u^+ = -dt + \frac{\alpha^+}{P^2} d\zeta$ and c.c.: $\alpha^{\pm}(t, \zeta, \overline{\zeta})$ satisfy

$$k^2 P \partial_{\zeta} \alpha^- = 2 \left(k^2 \alpha^- \partial_{\zeta} P + \partial_t P \right)$$
 plus c.c.

(h)

- With *M* constant $T^{\text{ref}\pm} = \frac{Mk^2}{8\pi G} \left(3 \left(u^{\pm} \right)^2 + ds_{\text{bry.}}^2 \right)$ is conserved
- Requiring $C = 8\pi Gk^2 \operatorname{Im} T^{\operatorname{ref}+}$ sets 1 constraint on *P*

$$\left(\partial_{\zeta} \mathcal{K}\right)^{2} + 6M\partial_{t} \left(\frac{\partial_{\zeta}^{2} P}{P}\right) = 0 \tag{D}$$

plus 1 constraint on $\alpha^- \partial_{\bar{\zeta}} K = 3Mk^2 \frac{\alpha^-}{P^2}$ – combined with (h) gives

$$P^2 \partial_{\bar{\zeta}} \partial_{\zeta} K - 6M \partial_t \log P = 0$$
 (E)

(plus c.c.)

The stress tensor T

• Using $T = \text{ReT}^{\text{ref}+}$ one finds the *non-perfect* $\frac{8\pi G}{k^2T}$

$$\begin{pmatrix} 2M & -\frac{1}{2k^2}\partial_{\zeta}K & -\frac{1}{2k^2}\partial_{\xi}K \\ -\frac{1}{2k^2}\partial_{\zeta}K & -\frac{1}{k^4}\partial_t \left(\frac{\partial_{\zeta}^2P}{P}\right) & \frac{M}{k^2P^2} \\ -\frac{1}{2k^2}\partial_{\zeta}K & \frac{M}{k^2P^2} & -\frac{1}{k^4}\partial_t \left(\frac{\partial_{\zeta}^2P}{P}\right) \end{pmatrix}$$

The perfect part is T^{perf} = Mk²/8πG (3u² + ds²_{bry}) with u = −dt a geodesic expanding congruence with zero shear and zero vorticity – not conserved

Resummation: using $ds_{bry.}^2$, C, T and u in Eq. (R)

$$ds_{bulk}^2 = 2dt \, dr - 2Hdt^2 + 2\frac{r^2}{P^2}d\zeta d\bar{\zeta} + h.d.$$

(RT)

with

$$2H = K + 2r\partial_t \log P - \frac{2M}{r} + k^2 r^2$$

The displayed part without h.d. is

- exact Einstein thanks to Eq. (E) \rightarrow integrability condition
- Petrov type D thanks to Eq. (D) \Leftrightarrow $3\Psi_2\Psi_4 = 2\Psi_3^2$

Robinson–Trautman type D class

- ▶ u \leftarrow 2 multiplicity-2 bulk principle null directions
- $u_{\pm} \leftarrow 2/4$ bulk tetrad elements

Alternative: same boundary Eq. (nv) $ds_{bry.}^2 = -dt^2 + \frac{2}{k^2P^2}d\zeta d\bar{\zeta}$

Pure-radiation reference tensor

$$4\pi Gk^2 \,\mathsf{T}^{\mathsf{ref}+} = F(t,\zeta) \,\mathsf{d}\zeta^2$$

arbitrary $F(t, \zeta) \Rightarrow \mathsf{T}^{\mathsf{ref}\pm}$ conserved

► C, T, u - resummation

Robinson-Trautman type N class

 $u \longleftarrow 1$ multiplicity-4 bulk principle null direction

Examples with vorticity

$$ds_{bry.}^2 = -\left(dt - b\right)^2 + \frac{2}{k^2 P^2} d\zeta d\bar{\zeta} \tag{nv}$$

P real function and $\mathsf{b} = b_{\bar{\zeta}}\mathsf{d}\bar{\zeta} + b_{\bar{\zeta}}\mathsf{d}\bar{\zeta}$ a real form – *a priori* arbitrary

- ▶ Impose $\exists 1 \text{ Killing} \Rightarrow 2 \text{nd one [Mukhopadhyay et al '13]}$
- Impose ∃ 2 c.c. geodesic expanding congruences u_± ⇒ perfect-fluid conserved T^{ref±} (non-constant pressure)
- Impose $C = 8\pi Gk^2 \operatorname{Im} T^{\text{ref}+} \Rightarrow$ solve for P and $b \Rightarrow ds_{brv}^2$.
- Extract $T = ReT^{ref+} = T^{perf} + \Pi$
- ► T^{perf} generally non-conserved aligned with u = −dt + b shearless, expanding geodesic congruence with vorticity
- Resum Eq. (R): exact Petrov type D Plebański–Demiański familly (mass, rotation, nut, "twist", acceleration)

Foreword

Gravitational self-duality

Weyl self-duality from the bulk to the boundary

Integrability and resummation

Illustration

Outlook

Summary: bottom-up approach and integrability

- Idea: shape 2 + 1-dim ds_{bry}^2 and T for exact ascendent
- Pattern: design conserved T^{ref±} of perfect or radiation conformal-fluid type
- ► Output:
 - Integration achieved: limited derivative expansion is exact Einstein (Plebański–Demiański, Robinson–Trautman, Kundt...)
 - ► Remarkable form of T^{ref±} ⇒ special form of W[±]: algebraic Petrov type (Kerr, Taub–NUT, C-metric, pp-waves...)
 - ► Generalizable to Einstein–Maxwell...

Consequence for holographic fluids: transport properties

- Exact solutions provide already rich information on transport coefficients (a fortiori when T is non-perfect) [Mukhopadhyay et al '13; de Freitas, Reall '14; Bakas, Skenderis '14]
- Perturbation of exact Einstein spaces as a deeper probe for transport can be made more systematic – captured in the known h.d. terms of the ds²_{bulk} expansion

Illustration of LeBrun's filling-in

Gravity, holography and the Fefferman–Graham expansion

The Robinson–Trautman type N class

A classic example

Bianchi IX AdS Schwarzschild-Taub-NUT

• Einstein space with $\Lambda = -3k^2$, mass *M*, nut charge *n*

$$ds^{2} = \frac{dr^{2}}{V(r)} + (r^{2} - n^{2}) (d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}) + V(r) \left(d\tau + 4n\sin^{2}\frac{\vartheta}{2}d\varphi\right)^{2}$$

 $V(r) = \frac{1}{r^2 - n^2} \left[r^2 + n^2 - 2Mr + k^2 \left(r^4 - 6n^2r^2 - 3n^4 \right) \right]$ • Weyl (anti-)self-dual (*i.e.* quaternionic) iff

 $M = \pm n(1 - 4k^2n^2)$

 \iff no conical singularity at r = n

The boundary geometry: $ds^2 \xrightarrow[r \to \infty]{} \frac{dr^2}{k^2r^2} + k^2r^2ds_{bry.}^2$

$$ds_{\text{bry.}}^{2} = \left(d\tau + 4n \sin^{2} \frac{\vartheta}{2} d\varphi \right)^{2} + \frac{1}{k^{2}} \left(d\vartheta^{2} + \sin^{2} \vartheta d\varphi^{2} \right)$$
$$= \frac{1}{k^{2}} \left(\left(\sigma^{1} \right)^{2} + \left(\sigma^{2} \right)^{2} \right) + 4n^{2} \left(\sigma^{3} \right)^{2}$$

with $au = -2n(\psi + \varphi)$ and $0 \le \vartheta \le \pi$, $0 \le \varphi \le 2\pi$, $0 \le \psi \le 4\pi$

$$\begin{cases} \sigma^1 = \sin \vartheta \sin \psi \, \mathrm{d}\varphi + \cos \psi \, \mathrm{d}\vartheta \\ \sigma^2 = \sin \vartheta \cos \psi \, \mathrm{d}\varphi - \sin \psi \, \mathrm{d}\vartheta \\ \sigma^3 = \cos \vartheta \, \mathrm{d}\varphi + \mathrm{d}\psi. \end{cases}$$

Conclusion: $ds_{bry.}^2$ is a Berger sphere

Illustration of LeBrun's filling-in

Gravity, holography and the Fefferman–Graham expansion

The Robinson–Trautman type N class

Gravity in d = 4

Palatini formulation and 3 + 1 split [Leigh, Petkou '07; Mansi, Petkou, Tagliabue '08]

$$I_{\mathsf{EH}} = -\frac{1}{32\pi G} \int_{\mathcal{M}} \epsilon_{abcd} \left(\mathcal{R}^{ab} + \frac{k^2}{2} \theta^a \wedge \theta^b \right) \wedge \theta^c \wedge \theta^d$$

 θ^a an orthonormal frame ${\rm d}s^2=\eta_{ab}\theta^a\theta^b~(\eta:+\varepsilon++)$ gauge: no lapse, no shift

• Coframe: $\theta^r = \frac{\mathrm{d}r}{\mathrm{k}r}$ and θ^μ

$$\mathsf{d}s^2 = \frac{\mathsf{d}r^2}{k^2r^2} + \eta_{\mu\nu}\theta^\mu\theta^\nu$$

Connection: ω^{rµ} = K^µ and ω^{µν} = −ε^{µνρ}B_ρ or (a)sd combination 1/2(K^µ ± B^µ) for ε = +

Hamiltonian evolution of θ^{μ} , \mathcal{K}^{μ} , \mathcal{B}_{ρ} from boundary data – what are the independent boundary data? Answer in asymptotically AdS: Fefferman–Graham expansion for large r [Fefferman, Graham '85; subtleties: de Haro, Skenderis, Solodukhin, '00]

$$\begin{array}{lll} \theta^{\mu}(r,x) &= kr \, E^{\mu}(x) + \frac{1}{kr} F^{\mu}_{[2]}(x) + \frac{1}{k^2 r^2} F^{\mu}_{[3]}(x) + \cdots \\ \mathcal{K}^{\mu}(r,x) &= -k^2 r \, E^{\mu}(x) + \frac{1}{r} F^{\mu}_{[2]}(x) + \frac{2}{kr^2} F^{\mu}_{[3]}(x) + \cdots \\ \mathcal{B}^{\mu}(r,x) &= B^{\mu}(x) + \frac{1}{k^2 r^2} B^{\mu}_{[2]}(x) + \cdots \end{array}$$

Independent 2 + 1 boundary data: E^{μ} and $F^{\mu}_{[3]}$

The holographic fluid

Interpretation of the boundary data

• E^{μ} : boundary orthonormal coframe – allows to determine

$$\mathrm{d} s_{\mathrm{bry.}}^2 = \eta_{\mu\nu} E^\mu E^\nu = g_{\mu\nu} \mathrm{d} x^\mu \mathrm{d} x^\nu$$

•
$$F^{\mu}_{[2]} = -1/2k^2 S^{\mu\nu} e_{\nu}$$
: Schouten

•
$$B_{[2]}^{\mu} = 1/2k^2 C^{\mu\nu} e_{\nu}$$
: Cotton

 F^µ_[3]: stress current one-form – allows to construct the vev of
 the boundary stress tensor

$$\mathsf{T} = \frac{3k}{8\pi G} \mathsf{F}^{\mu}_{[3]} \mathsf{e}_{\mu} = \mathsf{T}^{\mu}_{\ \nu} \mathsf{E}^{\nu} \otimes \mathsf{e}_{\mu}$$

Macroscopic object carrying microscopic data from the bulk

Illustration of LeBrun's filling-in

Gravity, holography and the Fefferman–Graham expansion

The Robinson-Trautman type N class

$$ds_{bry.}^2 = -dt^2 + rac{2}{k^2P^2}d\zeta dar{\zeta}$$

Now pure-radiation reference tensor

 $4\pi Gk^2 T^{ref+} = F(t,\zeta) d\zeta^2$

arbitrary $F(t, \zeta) \Rightarrow T^{ref\pm}$ conserved

• Requiring $C = 8\pi Gk^2 \operatorname{Im} T^{\operatorname{ref}+}$ sets 1 constraint on *P*

$$\partial_{\zeta} K = 0 \tag{N}$$

plus

$$\partial_t \left(\frac{\partial_{\zeta}^2 P}{P} \right) + F(t,\zeta) = 0$$
 (F)

(plus c.c.)
Eq. (N) sets K = K(t) and determines P(t, ζ, ζ̄)
Eq. (F) determines F(t, ζ) - no constraint

► Using T = ReT^{ref+} one finds the *non-perfect* stress tensor $8\pi Gk^2 T = F(t,\zeta) d\zeta^2 + \bar{F}(t,\bar{\zeta}) d\bar{\zeta}^2$

Using $ds_{bry.}^2$, C, T and u = -dt in Eq. (R) gives (RT) with M = 0

Petrov type N thanks to

Always exact Einstein

<u>Note</u>: $P(t, \zeta, \overline{\zeta}) = \frac{1+\epsilon/2 g \overline{g}}{\sqrt{2f \partial_{\zeta} g \partial_{\overline{\xi}} \overline{g}}}$ with $\varepsilon = 0, \pm 1$ and $f(t), g(t, \zeta)$ arbitrary functions $- F(t, \zeta)$ expressed in terms of $g(t, \zeta)$ and its derivatives

Robinson-Trautman type N class

 $\mathsf{u} \longleftarrow 1$ multiplicity-4 bulk principle null direction