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The set up

Framework: holographic fluids as hydrodynamic approximation of
finite-T and finite-µ states of a boundary CFT

Original motivation: determine transport coefficients

I Start with some bulk gravitational background related with
some boundary fluid in local thermodynamic equilibrium

I Perturb and analyse the response using the bulk-boundary
dictionary

Here: pure gravitational backgrounds −→ neutral boundary fluids



Triggering observation: some exact bulk solutions describe
I non-trivial fluid stationary states
I on non-trivial boundary backgrounds

−→ enable to probe substantially transport properties [Mukhopadhyay,

Petkou, Petropoulos, Pozzoli, Siampos, ’13]

Natural question: can one exhibit more systematically exact bulk
Einstein solutions that would produce richer or designed fluid states
– and provide more information on transport?
−→ answer encoded in integrability properties



Integrability

A very general framework
The question rephrased: how to find boundary geometries and
combine them with boundary fluid dynamics such as these data
integrate into an exact bulk solution ?

Formally: find an integrable phase subspace corresponding to some
first integral – effective reduction from 2nd- to 1st-order equations

I Supergravity: requirement of SUSY & Bianchi identities (BPS)
I General relativity: requirement of self-duality (in the 70s all

integrable systems thought to be SDYM reductions [Ward, ’85])

−→ reduction by half of the independent initial data

The guiding principle here: 4-dim self-duality for 2+ 1-dim
holographic fluids



Implementation

3 steps

1. Translate bulk self-duality into boundary data
2. Implement an integrable deviation from self-duality
3. Resum the Fefferman–Graham/derivative series expansions

into exact bulk Einstein spaces

Output: reconstruction of all known exact spaces from a single piece
of boundary data – type D Plebański–Demiański, type D & N
Robinson–Trautman, Kundt. . .
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The ancestor of holography

The “filling-in” problem – 1982

I A round S3 can be “filled-in” by H4

ds2
H4

=
dr2

1+ r2 + r2dΩ2
S3 → r2dΩ2

S3

I How to fill-in analytically a Berger sphere?

dΩ2
Berger =

(
σ1)2 + (σ2)2 + γ

(
σ3)2

(σi : Maurer–Cartan forms of SU(2))

Answer: Einstein space with self-dual Weyl tensor – quaternionic
space [LeBrun ’82; Pedersen ’86; Pedersen, Poon ’90; Tod ’94; Hitchin ’95]



Curvature decomposition

Metric ds2 = δabθaθb, connection one-form ωab and curvature
two-formRab ∈ 6 of SO(4) ∼= SO(3)sd ⊗ SO(3)asd

I Reducible under SO(3)sd and SO(3)asd: 6 = (3, 1)⊕ (1, 3)
I Curvature two-form (λ, µ . . . = 1, 2, 3)

(3, 1) Sλ = 1
2

(
R0λ + 1

2ελµνRµν
)

(1, 3) Aλ = 1
2

(
R0λ − 1

2ελµνRµν
)

and similarly for the connection one-form
I Basis for the space of two-forms ∧2

(3, 1) φλ = θ0 ∧ θλ + 1
2ελ

µνθµ ∧ θν

(1, 3) χλ = θ0 ∧ θλ − 1
2ελ

µνθµ ∧ θν



More on the Riemann tensor
Atiyah–Hitchin–Singer decomposition of Sµ,Aµ [Cahen, Debever, Defise ’67; Atiyah,

Hitchin, Singer ’78]

Sµ = 1
2W

+
µνφν + 1

12sφµ +
1
2C

+
µνχν

Aµ = 1
2W

−
µνχν + 1

12sχµ +
1
2C
−
νµφν

with W± and C± 3× 3 matrices encoding 19 components of the
Riemann and s a function

I s = R/2 scalar curvature → 1
I C+

µν = C−νµ traceless Ricci → 9
I W+

µν self-dual Weyl tensor symmetric and traceless → 5
I W−

µν anti-self-dual Weyl tensor symmetric and traceless → 5

Quaternionic spaces: C± = 0 s = 2Λ W− = 0 or W+ = 0⇔
Einstein & Weyl (anti-)self-dual



The case of Lorentzian signature: SO(4) is traded for SO(3, 1)

I Decomposition into self-dual and anti-self-dual parts possible
upon complexification

I W+ and W− are complex-conjugate
I W+ = 0⇔ W− = 0⇔ space conformally flat
I The 10 independent components are captured in 5 complex

functions Ψa, a = 0, . . . , 4 projections of W onto a null tetrad
(physical meaning in terms of geodesic deviation)

The existence of 4 principal null directions, potentially degenerate
with higher multiplicity, translates into special algebraic relationships
among the Ψs: Petrov type I, II, III, D, N, O
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Gravity in d = 4 and the holographic fluid

Set an orthonormal frame ds2 = ηabθaθb (η : + ε ++)

I Choose a gauge with no lapse or shift ds2 = dr2
k2r2

+ ηµνθµθν

I Expand θµ(r , x) for large r [Fefferman, Graham ’85; subtleties: de Haro et al ’00]

θµ(r , x) = kr E µ(x) +
1
kr

F
µ

[2](x) +
1

k2r2F
µ

[3](x) + · · ·

I Read off the 2 independent 2+ 1 boundary data: E µ and F
µ

[3]

ds2
bry. = ηµνE

µE ν = gµνdxµdxν

T = 3k
8πG F

µ

[3]eµ = T
µ
νE

ν ⊗ eµ

these allow for the Hamiltonian bulk reconstruction



Bulk Weyl self-duality and its boundary manifestation

Expanding W± = 0 leads to [Leigh, Petkou ’07; de Haro ’08; Mansi et al ’08; Miskovic, Olea ’09]

8πGk2Tµν ± (i)Cµν = 0

with Cµν the components of the boundary Cotton

Key property: C and T are
I traceless
I conserved

Away from the self-dual point so is

T ref±
µν = T µν ± (i)

8πGk2C
µν 6= 0

reflecting W±
µν = 8πG

k2r3
T ref±

µν + · · · 6= 0
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The question

Using FG expansion any reasonable boundary data gµν and Tµν

allow to reconstruct a bulk Einstein space
I neither necessarily regular
I nor generally exact

Given a boundary geometry ds2
bry. can one determine

I the conditions it should satisfy
I the stress tensor it should be accompanied with

for the expansion to be exactly resummable?



The answer
The Lorentzian-signature ds2

bry. must admit 2 symmetric, traceless
and conserved rank-2 tensors Tref± related by complex conjugation
The pattern: scan classes of ds2

bry. admitting exact Tref± and

I further impose on ds2
bry. the condition

C = 8πGk2 ImTref+ (C)

I build the bulk with the resulting ds2
bry. and the stress tensor

T = ReTref+ (T)

1 piece of bry. data is used – subject Eq. (C), accompanied with (T)



The reference tensors Tref±

Integrability in Einstein spaces is tight to Petrov types D, N, O

I n principal null directions of multiplicity m with nm = 4
I null shear-free geodesic congruences

=⇒ W± are remarkably simple and so must be Tref±

Boundary geometries expected to lead to resummable series should
I either possess complex-conjugate time-like geodesic congruences

associated with perfect-fluid-form Tref±

I or admit null congruences associated with pure-radiation Tref±



Remarks

On conformal perfect fluids with some time-like velocity field u

I Tperf = p
(
3u2 + ds2

bry.

)
I Euler equations

{
∇u log p + 3/2 Θ = 0
∇⊥ log p + 3a = 0

=⇒ geodesic and expansionless u solve them with constant p

On the actual stress tensor T = ReTref+

I Not expected to be perfect: T = Tperf + Π
I The fluid congruence u is read off from the perfect piece
I Tperf and Π are not separately conserved



The series expansion

Using the boundary data ds2
bry. and T as well as C and u the partly

resummed derivative expansion reads [Bhattacharyya et al ’08; Caldarelli et al ’12]

ds2
bulk = −2u(dr + rA) + r2k2ds2

bry. +
1
k2 Σ

+
u2

ρ2

(
8πGTλµu

λuµ

k2 r +
Cλµu

ληµνσωνσ

2k6

)
+ h.d.

(R)

I A = a− Θ
2 u ω = 1

2 (du + u∧ a)
I Σ = −2u∇νων

µdxµ −ω λ
µ ωλνdxµdxν −

1
2u2 (R + 4∇µA

µ − 2AµA
µ
)

I ρ2 = r2 + 1
2k4 ωµνωµν ηµνσ = εµνσ/√−gbry.

Using Eqs. (C) and (T) the first terms of (R) are exact Einstein
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Examples without vorticity

ds2
bry. = −dt2 +

2
k2P2 dζdζ̄ (nv)

P(t, ζ, ζ̄) real & a priori arbitrary – define K = 2P2∂ζ∂ζ̄ logP
I Cotton-tensor components Cµν:

0 − k2
2 ∂ζK

k2
2 ∂ζ̄K

− k2
2 ∂ζK −∂t

(
∂2

ζ
P

P

)
0

k2
2 ∂ζ̄K 0 ∂t

(
∂2

ζ̄
P

P

)


I Complex-conjugate geodesic & expansionless congruences

u+ = −dt + α+

P2 dζ and c.c.: α±(t, ζ, ζ̄) satisfy

k2P∂ζα− = 2
(
k2α−∂ζP + ∂tP

)
plus c.c. (h)



I With M constant Tref± = Mk2

8πG

(
3 (u±)2 + ds2

bry.

)
is conserved

I Requiring C = 8πGk2 ImTref+ sets 1 constraint on P

(
∂ζK

)2
+ 6M∂t

(
∂2

ζP

P

)
= 0 (D)

plus 1 constraint on α− ∂ζ̄K = 3Mk2 α−

P2 – combined with (h)
gives

P2∂ζ̄∂ζK − 6M∂t logP = 0 (E)

(plus c.c.)



The stress tensor T

I Using T = ReTref+ one finds the non-perfect 8πG/k2T
2M − 1

2k2
∂ζK − 1

2k2
∂ζ̄K

− 1
2k2

∂ζK − 1
k4

∂t

(
∂2

ζ
P

P

)
M

k2P2

− 1
2k2

∂ζ̄K
M

k2P2
− 1

k4
∂t

(
∂2

ζ̄
P

P

)


I The perfect part is Tperf = Mk2

8πG

(
3u2 + ds2

bry.

)
with u = −dt

a geodesic expanding congruence with zero shear and zero
vorticity – not conserved



Resummation: using ds2
bry., C, T and u in Eq. (R)

ds2
bulk = 2dt dr − 2Hdt2 + 2

r2

P2 dζdζ̄ + h.d. (RT)

with
2H = K + 2r∂t logP −

2M
r

+ k2r2

The displayed part without h.d. is
I exact Einstein thanks to Eq. (E) → integrability condition
I Petrov type D thanks to Eq. (D) ⇔ 3Ψ2Ψ4 = 2Ψ2

3

Robinson–Trautman type D class

I u←− 2 multiplicity-2 bulk principle null directions
I u± ←− 2/4 bulk tetrad elements



Alternative: same boundary Eq. (nv) ds2
bry. = −dt2 + 2

k2P2 dζdζ̄

I Pure-radiation reference tensor

4πGk2 Tref+ = F (t, ζ) dζ2

arbitrary F (t, ζ)⇒ Tref± conserved
I C,T, u – resummation

Robinson–Trautman type N class
u←− 1 multiplicity-4 bulk principle null direction



Examples with vorticity

ds2
bry. = − (dt − b)2 +

2
k2P2 dζdζ̄ (nv)

P real function and b = bζdζ + bζ̄dζ̄ a real form – a priori arbitrary
I Impose ∃ 1 Killing ⇒ 2nd one [Mukhopadhyay et al ’13]

I Impose ∃ 2 c.c. geodesic expanding congruences u± ⇒
perfect-fluid conserved Tref± (non-constant pressure)

I Impose C = 8πGk2 ImTref+ ⇒ solve for P and b⇒ ds2
bry.

I Extract T = ReTref+ = Tperf + Π
I Tperf generally non-conserved – aligned with u = −dt + b

shearless, expanding geodesic congruence with vorticity
I Resum – Eq. (R): exact Petrov type D Plebański–Demiański

familly (mass, rotation, nut, “twist”, acceleration)
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Summary: bottom-up approach and integrability

I Idea: shape 2+ 1-dim ds2
bry. and T for exact ascendent

I Pattern: design conserved Tref± of perfect or radiation
conformal-fluid type

I Output:
I Integration achieved: limited derivative expansion is exact

Einstein (Plebański–Demiański, Robinson–Trautman, Kundt. . . )
I Remarkable form of Tref± ⇒ special form of W±: algebraic

Petrov type (Kerr, Taub–NUT, C -metric, pp-waves. . . )
I Generalizable to Einstein–Maxwell. . .



Consequence for holographic fluids: transport properties
I Exact solutions provide already rich information on transport

coefficients (a fortiori when T is non-perfect) [Mukhopadhyay et al ’13; de

Freitas, Reall ’14; Bakas, Skenderis ’14]

I Perturbation of exact Einstein spaces as a deeper probe for
transport can be made more systematic – captured in the known
h.d. terms of the ds2

bulk expansion
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A classic example

Bianchi IX AdS Schwarzschild–Taub–NUT

I Einstein space with Λ = −3k2, mass M, nut charge n

ds2 =
dr2

V (r)
+
(
r2 − n2) (dϑ2 + sin2 ϑdϕ2)

+V (r)

(
dτ + 4n sin2 ϑ

2
dϕ

)2

V (r) = 1
r2−n2

[
r2 + n2 − 2Mr + k2 (r4 − 6n2r2 − 3n4)]

I Weyl (anti-)self-dual (i.e. quaternionic) iff

M = ±n(1− 4k2n2)

⇐⇒ no conical singularity at r = n



The boundary geometry: ds2 →
r→∞

dr2
k2r2

+ k2r2ds2
bry.

ds2
bry. =

(
dτ + 4n sin2 ϑ

2
dϕ

)2

+
1
k2

(
dϑ2 + sin2 ϑdϕ2)

=
1
k2

((
σ1)2 + (σ2)2)+ 4n2(σ3)2

with τ = −2n(ψ + ϕ) and 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ 4π
σ1 = sin ϑ sinψ dϕ + cosψ dϑ

σ2 = sin ϑ cosψ dϕ− sinψ dϑ

σ3 = cos ϑ dϕ + dψ.

Conclusion: ds2
bry. is a Berger sphere
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Gravity in d = 4

Palatini formulation and 3+ 1 split [Leigh, Petkou ’07; Mansi, Petkou, Tagliabue ’08]

IEH = − 1
32πG

∫
M

εabcd

(
Rab +

k2

2
θa ∧ θb

)
∧ θc ∧ θd

θa an orthonormal frame ds2 = ηabθaθb (η : + ε ++)
gauge: no lapse, no shift

I Coframe: θr = dr
kr and θµ

ds2 =
dr2

k2r2 + ηµνθµθν

I Connection: ωrµ = Kµ and ωµν = −εµνρBρ or (a)sd
combination 1/2(Kµ ±Bµ) for ε = +



Hamiltonian evolution of θµ,Kµ,Bρ from boundary data – what are
the independent boundary data? Answer in asymptotically AdS:
Fefferman–Graham expansion for large r [Fefferman, Graham ’85; subtleties: de Haro,

Skenderis, Solodukhin, ’00]

θµ(r , x) = kr E µ(x) + 1
kr F

µ

[2](x) +
1

k2r2
F

µ

[3](x) + · · ·
Kµ(r , x) = −k2r E µ(x) + 1

r F
µ

[2](x) +
2
kr2

F
µ

[3](x) + · · ·
Bµ(r , x) = Bµ(x) + 1

k2r2
B

µ

[2](x) + · · ·

Independent 2+ 1 boundary data: E µ and F
µ

[3]



The holographic fluid

Interpretation of the boundary data

I E µ: boundary orthonormal coframe – allows to determine
ds2

bry. = ηµνE
µE ν = gµνdxµdxν

I F
µ

[2] =
−1/2k2Sµνeν: Schouten

I B
µ

[2] =
1/2k2Cµνeν: Cotton

I . . .

I F
µ

[3]: stress current one-form – allows to construct the vev of
the boundary stress tensor

T = 3k
8πG F

µ

[3]eµ = T
µ
νE

ν ⊗ eµ

Macroscopic object carrying microscopic data from the bulk
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ds2bry. = −dt2 + 2
k2P2 dζdζ̄

Now pure-radiation reference tensor

4πGk2 Tref+ = F (t, ζ) dζ2

arbitrary F (t, ζ)⇒ Tref± conserved

I Requiring C = 8πGk2 ImTref+ sets 1 constraint on P

∂ζK = 0 (N)

plus

∂t

(
∂2

ζP

P

)
+ F (t, ζ) = 0 (F)

(plus c.c.)
I Eq. (N) sets K = K (t) and determines P(t, ζ, ζ̄)
I Eq. (F) determines F (t, ζ) – no constraint



I Using T = ReTref+ one finds the non-perfect stress tensor

8πGk2 T = F (t, ζ) dζ2 + F̄ (t, ζ̄) dζ̄2

Using ds2
bry., C, T and u = −dt in Eq. (R) gives (RT) with M = 0

I Petrov type N thanks to
M = 0 ⇔ Ψ2 = 0

(N) ⇔ Ψ3 = 0
I Always exact Einstein

Note: P(t, ζ, ζ̄) = 1+ε/2 g ḡ√
2f ∂ζg ∂ζ̄ ḡ

with ε = 0,±1 and f (t), g(t, ζ) arbitrary

functions – F (t, ζ) expressed in terms of g(t, ζ) and its derivatives

Robinson–Trautman type N class
u←− 1 multiplicity-4 bulk principle null direction
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