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Motivation

m Lifshitz symmetry is realized in QFTs close to a second order phase transition,
e.g. quantum critical points. Relevant for real materials such as high 7.
superconductors.

m Quantum anomalies are physical aspects of QFTs dictating the form of contact
terms in correlation functions and impacting on physical observables such as
transport coefficients, even in flat space!

m Local Weyl anomalies are also related to RG flows and the ¢/a-theorem.

m A significant part of our understanding of Lifshitz theories has come from
holography.
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Wess-Zumino consistency conditions

= In the local RG description of QFT [Osborn '93] couplings are promoted to local

fields:
S{g(z)}; {¢()}]

m Global symmetries of the classical action S are promoted to gauge symmetries
under which the local couplings transform: space-time symmetries are promoted
to local diffeomorphisms and global internal symmetries to Yang-Mills/Maxwell
gauge symmetries.

m The classical action is invariant under an infinitesimal gauge transformation
parameterized by x¢, i.e.

dxeS[H{g()}; {o(x)}] =0

but the quantum effective action W[{g(z)}; {#(x)}] generically will transform
anomalously under such transformations:

SxeW[{g(2)}] = Ax=[{g(2)}]
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m The anomalies A, « must satisfy the Wess-Zumino condition

b Ays =85 Aya = (Sxad s — 8 abxa ) Wi{g(2)}]
~ 5[XQ’X/1]W[{Q(ZE)H = A[Xn,xﬂ] {g()}]

m A trivial solution of this condition is one corresponding to A, « being itself a gauge
transformation of a local functional of the couplings, i.e.

Axe = oy Gl{g(2)}]
Anomalies of this form are unphysical since they can be removed by adding
—G[{g(x)}] as a counterterm to the generating functional W[{g(x)}].

m The space of possible physical anomalies is the space of all solutions to the WZ
consistency condition modulo gauge transformations of local functionals.

m This problem can be formulated formally as a cohomology problem by introducing
a Grassmann-valued BRST-like ghost.
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Ward identities

m In the local RG formulation of QFT the local couplings act as sources of local
operators, which can be defined as

SW{g}]

Og () ~ 59(2)

m This definition of local operators leads to the anomalous Ward identities:

5 W gl =3 / 59(2)0y (x) = Ay
g

where §, g(z) denotes the transformation of the local couplings under the gauge
transformation parameterized by .
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Isotropic (relativistic) Weyl anomalies

= In order to gauge the Poincaré group in a relativistic QF T we introduce a metric
9(0yi; (z) and define the theory covariantly on the resulting manifold so that the
action is invariant under local diffeomorphisms:

3¢9(0yij () = D(0yi& + D(0yj&i» dap(0)(x) = Lep(o)

m In a classically scale invariant QF T we also promote scaling transformations to
local Weyl transformations:

ba9(0)ij (2) = 200(2)9(0)ij (), Sop(0)(x) = —(d — A)do(z)p(0)(2)

m Inserting these transformations of the local couplings in the above general Ward
identity leads to the familiar diffeomorphism and trace Ward identities of a
relativistic QFT:

D(o)iT} + 0000y =0, T+ (d—A)p)O = A

where the stress tensor and the operator O(z) are defined via the relations

i 2 W 1 oW
V9(0) 99(0)i; VI(0) 90
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m The possible contributions to the trace anomaly A are determined by the relative
cohomology problem of the Weyl operator 6, with respect to diffeomorphisms, i.e.
non-trivial cocycles in the cohomology of . built out of diffeomorphism invariants
[Bonora, Pasti, Tonin '86].

m For relativistic theories it is known that:

= for odd dimensions there are no Weyl anomalies (except for possible pure matter
contributions)

m for even dimensions there are two types of Weyl anomalies: the Euler density (type A)
and the various Weyl invariants in the corresponding dimension (type B).

m This cohomological problem determines all possible terms that can appear in the
conformal anomaly, but does not fix their coefficients, which depend on the
particular theory.

m In the presence of matter sources writing down all possible diffeomorphism
invariants of the right dilatation weight becomes more complicated.
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Anisotropic (Lifshitz) Weyl anomalies

m The analogous problem for anisotropic Weyl transformations has been studied
holographically in a number of recent works (e.g. [Baggio, de Boer, Holsheimer '11;
Griffin, Hofava, Melby-Thompson '11]) and purely cohomologically by [Arav, Chapman,
0z '14].

m In Lifshitz theories time is singled out due to the anisotropic scaling symmetry
governed by the dynamical exponent z # 1.

m A Lifshitz QFT is therefore naturally described on a manifold with a metric g(g);;
together with a codimension-1 foliation specified locally by a 1-form ¢; that
satisfies the Frobenius integrability condition

tAdt =0

m Below we will make extensive use of the normalized foliation 1-form

n; o< t;, nini:—l

Note: a somewhat different covariantization of Lifshitz theories, corresponding to
gauging the Schrédinger algebra, has been put forward in [Hartong, Kiritsis, Obers
'14; Bergshoeff, Hartong, Rosseel '14; Hartong, Kiritsis, Obers ’15]

|. Papadimitriou Holographic Lifshitz scale anomalies 9/41



m The local symmetries under which the background fields g(o);; and ¢; transform
are diffeomorphisms:

6e9(0)ij (x) = D(0yi&j + D(0y;&i> et = Leti = & Dg)ti + D(0yi&'t;

a subset of which are foliation preserving, i.e. L¢t; o< t;, and anisotropic Weyl
rescalings:

6()‘ti =0, 6(,ni = zéoni, 6Uni = —Z(;O'ni, do ij = 200 ij

where ;; = g(0)i; + NiN; is the projector to the tangent space of the foliation.

m These transformations lead respectively to the diffeomorphism and anisotropic
Weyl Ward identities (in the notation of [Arav, Chapman, Oz '14])

D(O)jITij — 28[inj]Jj + niD(O)ij =0, ijTij — Znianij =A

where
ow . 1 ow

(3

Tij ~ Liy T~ ——
V' —9(0) 99(0)i; V=90 0ti
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m The possible contributions to the anisotropic Weyl anomaly .4 can be determined
by the relative cohomology of the anisotropic dilatation operator ¢, with respect to
foliation preserving diffeomorphisms.

m All possible contributions can be expressed in terms of the following geometric
data [Chemissany, I.P. '14; Arav, Chapman, Oz '14]:

; 1
ijy Qi =n’Djn;, K = Eﬁm iy Rijri[ ]
as well as time, L, and spatial D;, derivatives of any of these tensors and any
additional matter fields.
= The cohomological problem involves writing down the all possible diffeomorphism

invariant combinations of the correct dilatation weight and does not determine the
coefficients of the allowed terms.
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Holographic Lifshitz theories from EPD gravity
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Holographic computation of Weyl anomalies

[Henningson, Skenderis '98]

m Local sources arise as integration functions in the asymptotic solutions of the
equations of motion.

m The gauge transformations of these sources correspond to the subset of
asymptotic bulk diffeomorphims leaving the asymptotic expansions form-invariant,
i.e. Penrose-Brown-Henneaux (PBH) diffeomorphisms.

m Conformal anomalies arise due to local counterterms that explicitly depend on the
UV cutoff.
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Lifshitz geometry

m The Lifshitz (Lif) metric is [Kachru, Liu, Mulligan '08]
dsi o = Pu~? (du2 —u 2D g2 4 dx“dwa>
with dynamical exponent z # 1
m This metric is invariant under the scaling transformation
% = Xz, t— Nt , u— du

m The conformal boundary is located at u = 0
m The null energy condition

Ty kH kY >0, kFk, =0

requires
z>1
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Einstein-Proca-Dilaton (EPD) model

1
Se=53 » A2/ =ge™? (Rlg] — agdupdtd — Ze(¢)F% — We(¢) B — Ve(9))

m The Stiickelberg w renders the vector field
B, = A, —Ouw
invariant under the U (1) transformation
Ay = Ap+ 0N, w—w+A
m We work in the “dual frame” so that asymptotically locally Lifshitz boundary

conditions generically correspond to asymptotically hyperscaling violating Lifshitz
boundary conditions in the Einstein frame.
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Lifshitz solutions

m This model admit Lif or hvLf solutions at least asymptotically provided the

potentials are of the form
Ve = V,e2(Pt09 Ze = Zoe 2EH0)9 We = Woe29
m The parameters are related to the parameters of the Lif solutions

ds? = dr? — e2*7dt? + e2"d7?, A= %eerclzf7 ¢ = pr, w = const.
€Zo

as
€—Z zZ — €
ﬂ:—& V:_§+ ) o= )
o

I

_ (o +d2€2)% —dug +2(: = 1)
z—1

1
Q= 5Z0(z = 1)e,

Vo = —d(1 + p&)(d + 2z +duf) — (z — 1)e.

)

Wo = 2Z5e(d + z + du& — ¢),

16/41
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Radial Hamiltonian formalism

= ADM decomposition
ds* = (N? + N;NV)dr? + 2N;drdz® + ~;jdx* da?
= Radial ADM Lagrangian:

1 i 2d¢ . i
L = o5 /dd“x\ﬁwedf‘ﬁ {RM + K = KV Ky + <2 K(6 = N'0:i9)
o . » 2 ..
— 35 (6= N0io) — aerT0i00;0
2 . »
—Ze () (W'YZ](FM' — N*F)(F,; — N'Fy;) + 'YU'Yleiijl)

—We() (% (Ar — NPA; — &+ N'ow)” + WBZ«Bj) = v5(¢)}
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First class constraints

m Hamiltonian:
H = /dd‘Hz (aﬁjw“ + At + +<;m,) - L

= /dd“a; (NH + N;H' + A F)

m where
K2 _ 2 1 o 1 4 1.1 o
Hzf\/j’ye d§o (27r ij 7gﬂ'2+%(7r¢72£ﬂ') +ZZ£ T 7ri+§W£ ﬂw)
Vo s (_R 8169;6 + Ze(9)FI Fy; + We($)BiB; + V,
+ 242 € (_ ['7] + [£73 $0i + §(¢) ij T {(({b) i+ §(¢))

HE = —2Dj7rji + Fijﬂj + 7r¢8i¢ — Bin,,

F=—-Dir’ + 7,
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Canonical momenta

m From off-shell Lagrangian:

.. SL .. dé .. /.
iJ dé¢ K iJ _ K 95 g _ Nka )
™ 5 %2 v—re ( g + N7 <¢> k¢> ;
i oL
i _ — S~ edEP . _ NFk .
TTSA 2142 e Ze(0 )N 7 (B = N
(5L ded ( 2045 )
= —=— 2dEK — N?o;
=53 2’{2 Ve 3 (- )
T = i—L Fedsd’WE( ) (w— N"9;w — Ar + N'A;)
w

m From on-shell action:

Ly _ 8 S 58 58

, = y T = <7 Tw=
0vij dA; Y03 dw
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Flow equations

m Combining the two expressions for the momenta:

. 4k2 ag +d%¢? 5 13 5
Fij = — e de? ((’Yik'le - ’Yij’Ykl) o S,

v= do v zvij%
A = f%QV%e—deglwm %s,
¢ = —%2\/%—76_‘154) (% — 287ij %) S,
w= —\/'f—;e*dwwgl(@%s
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Zero derivative solution of the HJ equation

m The zero order solution of the HJ equation contains no transverse derivatives:
1 )
Sw = 5 [ d o=, AiA)

m Inserting this ansatz into the Hamiltonian constraint yields a PDE for U(X,Y'),
where X := ¢, Y := B; B* = A; A* (cf. superpotential equation)

1

5o (Ux — €@+ 1)U + 2YUy)* + Z; {(X)YUT

S i (d+ 1)U +2(d—-1)YUy) (U —-2YUy) = %eQde (We(X)Y + Ve(X))

m This equation for the ‘superpotential’ U (X, Y") determines the zero derivative
solution of the Hamilton-Jacobi equation: It can be used to holographically
renormalize any homogeneous background of the equations of motion and any
exact solution of this PDE leads to exact solutions of the equations of motion via
the flow equations.
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Asymptotically locally Lifshtiz backgrounds

m Imposing Lifshitz boundary conditions requires that asymptotically the gauge
invariant vector field behaves as

z—1 _
Bi ~ Boi = \| —— 27 Y%(¢)n;
2e 3

where n; is the canonically normalized time foliation 1-form.
m This in turn implies that the superpotential U (X, Y") must satisfy

U(X,Yo(X)) ~ e®X (d(1 4 p) +2 - 1)
Uy (X, Yo(X)) ~ —ce®™X Z:(X)
Ux (X, Yo(X)) ~ X (—pag + dé(d + 2))

m Hence, the asymptotic form of the zero order solution of the HJ equation is

1 1 ;
S0y ~ ?/ ditlp/—redsd (d(l + pé) + 5(z —-1) — eZg((i))BiBl)
o
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Taylor expansion of the superpotential

m Since Lifshitz boundary conditions require that B; ~ B,; asymptotically, the
solution of the HJ equation can be expressed as a Taylor series in B; — B,;

m The zero derivative solution S can be Taylor expanded in
Y — Y, =2B!(B; — Bo;) + O(B — B,)?
where Y, = B! B,;, as
U = D% (ug(¢) + Y, ur(@)(Y — Yo(@)) + Yo uz(9)(Y = Yo(9))” +--)

m Inserting this expansion in the superpotential equation for U(X,Y") leads to a
tower of equations for the functions w,, (¢)
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= An additional relation between the functions ug(¢) and w1 (¢) is imposed by the
consistency of the Taylor expansion, i.e. requiring that

Y — Yo =O(Y —Y,)

= In a bottom up approach these equations can be used to define the potentials
V(¢), Z(¢) and W (¢) in terms of ug(¢) and w1 (¢), with all u,, (¢) for n > 2 being
determined in terms of these functions.

m Lifshitz boundary conditions require
ug(¢) ~ (2 = 1+ d(1 + pé)) e *?
u(8) ~ (s = D0
m The function u2(¢) satisfies a quadratic (Riccati) equation and determines the

scaling behavior of the independent mode Y — Y, while u,, (¢) with n > 3 satisfy
linear equations.
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Recursive solution of the HJ equation

m To summarize the above analysis, we have shown that the most general zero
derivative solution of the HJ equation takes the form

1
S =3 /Z A" a/=yU (¢, B?)

where for Lifshitz boundary conditions the superpotential U (X, Y') admits a Taylor
expansion in Y — Y,. Moreover, this zero derivative solution is the asymptotically
leading one, with derivative terms entering only in asymptotically subleading
orders.

= In order to systematically determine these asymptotically subleading derivative
terms of the solution of the HJ equation, we expand S in a covariant expansion in
eigenfunctions of a suitable operator.

m For backgrounds with asymptotic scaling invariance one can use the dilatation
operator [I. P. & Skenderis 2004] but in the presence of an asymptotically running
dilaton, meaning that asymptotic scale invariance is broken, this is not sufficient.

m Instead we need an operator such that S is an eigenfunction for any
superpotential U (¢, B?).
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m In fact there are two mutually commuting such operators:

= i 5 5 : 5 5
5:= [ d¥ iz (2v;; B; ) 5p = /dd+1 (2Y’1B,~Br B;
/ *\ Mg, T Piss B v 5y, eBs

which satisfy
38(0) =(@d+1)S), BS0) =S(0), [6,05] =0

m This allows us to seek a solution of the HJ equation in the form of a graded
covariant expansion in simultaneous eigenfunctions of both § and d:

¢S]

[eS) k ook
§=3 S =33 Saran =33 [ d eLonzn
k=0

k=0£=0 k=0¢=0

where
58S (ak,00) = (d+1—2k)S(ox,00), IBS(an,00) = (1 = 20)S(2p00), 0<E<k

m The operator & counts derivatives

m The operator § annihilates the projection operator o := 6% — Y ~' B*B; and
counts derivatives contracted with B;, which asymptotically become time
derivatives since B; ~ B,; o n;
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Linear recursion equations

m Inserting the covariant expansion of S in simultaneous eigenfunctions of Sand ép
in the Hamilton-Jacobi equation (Hamiltonian constraint) results in a system of
recursive first order functional /inear equations for the higher derivative terms:

1 )
Ly — @+ vev r2evuy) 2 / Loyt
«a op

_ 1 s
((21/ + 2 Yoy + - (U — 2(e + d?€2)Y Uy + ngX)> Bié—Bi /L@,c,w—

1
(@ (U — 2(ag + d*€2)Y Uy + deUx) (d+ 1 — 2k) + 2Y Uy (1 — 25)) Lak,20) =

6d§¢7—\’,(2;‘,..2/)

m The inhomogeneous term R (3, 2¢) iNvolves derivatives of lower order terms as
well as the 2-derivative sources from the Hamiltonian constraint
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Lifshitz boundary conditions

m The covariant expansion of S in simultaneous eigenfunctions of 5 and 63, and
hence the above recursion relations, is independent of the specific choice of
boundary conditions

= In order to impose Lifshitz boundary conditions we must additionally expand
S(2k,2¢) IN B; — By, at each order of the covariant expansion as

Lok = Llogonh(®),6()]
+/dd+11,(31(90/) — Boi(@') L3y, 20y 1(@), $(2);2'] + O (B = B,)?

m Inserting this Taylor expansion in the above recursion relations eliminates the
derivative with respect to B;, resulting in first order linear functional differential
equations in ¢ only. Such functional differential equations appear in the relativistic
case as well, e.g. for non-conformal branes or Improved Holographic QCD, and

they can be solved systematically [I.P. "11].
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Solution of the recursion relations up to O(B — B,)

m The inhomogeneous solution of these linear functional differential equations takes

the form

o _  _ _
Lo 20) :e_ck’zA(qb)/ d¢’c(¢)eck‘2A(¢)R?2k,2e)7

i plj 5 —Ch.oA (TN ChnA@) g% il
jﬁ(ék,u):ZZe k,eA(P) dGK(p)eCh . (¢5)Zg 2 jR(gk‘%),

. ¢ 5 =514
Boj (@)L3) 50) = Q_le_Ck’ZA(é)/ ABK(8)e AP UBo R 3, 20,

where C, o :=d+1—2k+ (z —1)(1 — 2¢),

1
) L N ST B e B
ebd (u’ + Z—,u > 2 ¢
(L

and the Q(¢) can be expressed in terms of ug, u1 and us.

m If © = 0 (e.g. for Einstein-Proca theory) the corresponding solutions can be

expressed algebraically in terms of the source terms.
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Structure of the HJ solution

m The general asymptotic solution of the HJ equation obtained via the above
algorithm takes the form

5= > /“'/(B_Bo)ms(rgk,ze)+‘§ren+'“
k.6m | Cp p+6—mA_>0

where AL = d+ z — 0 — A_ is the scaling dimension of the scalar operator dual
to the mode ‘
¢ =Y, "B} (Bj — Boy)
and (B — Bo)msggk 20) has dilatation weight Cj, o + 6 — mA _, while Sren has
dilatation weight 0.
m Allterms (B — Bo)mSZSk,gg)
recursion algorithm.

m ForCy o+ 6 — mA_ < 0these terms are powerlike divergent in the UV, while
terms with C, » + 0 — mA_ = 0 have a pole which via dimensional regularization
leads to a logarithmic divergence. Such logarithmically divergent terms give rise to
the conformal anomaly when p = 0, but they can be absorbed in the dilaton when

p # 0.

with Cp, ¢ + 0 — mA_ > 0 are determined by the
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m The covariant local counterterms that render the on-shell action finite and the
variational problem with Lifshitz boundary conditions well posed are

e S [ e,

k,t,m | Cp o+dpg—mA_ >0

m The renormalized part of the on-shell action is therefore given by the UV-finite
term Syen, Which corresponds to an independent contribution to the HJ solution
and can be parameterized as

gren = /dd+1x ('Yij%ij + Bz%z + dﬁr\¢)

where 7/, 7 and 7, are undetermined integration functions of the HJ equation.
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Sources & VEVs

m Inserting this general asymptotic solution of the HJ equation, including the
undetermined term 8., in the first order flow equations one can systematically
derive the generalized asymptotic Fefferman-Graham expansions for the bulk
fields, including the sources and 1-point functions of the dual operators.

m The sources generically correspond to integration constants of the flow equations,
while the 1-point functions are related to the integration constants of the HJ

solution in Sy.c,.
m Decomposing the induced fields as

'yz-]-dmid:pj = —(n2—nana)dtZ+2nadtdxa+aabdm“dmb, A;dzt = adt+Aqdz?®,

where the indices a, b run from 1 to d, and introducing the linear combinations

. e—dEs L
=T = (27r” LY IBIBIB, )
_ edgs K
045 = \/j’y (7r¢ + (V—f—g)Boiﬂ'L) 5
T T
= T = — 7,
v V= Ve

the full set of sources and VEVs is (cf. energy-momentum complex [Ross '09]):
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1-point function source
spatial stress tensor ﬁ; = 5 g TH ~ e (== () T(0)ab
momentum density Pii=— imTH ~ e (@+2-0)rpi(g) n(0)a
energy density E = —npm TH ~ e (d+2=0)rg(g) n(0)
energy flux &t~ e (d422=0)rgi(g) 0
dilaton Oy ~ e~ (dt=4du)ro (1) b(0)
composite scalar &b ~ e AT Oy (z) P
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Holographic Ward identities

m The momentum constraint of the radial Hamiltonian formalism leads to the
diffeomorphism Ward identities
Djﬁz: + qjﬁg + nijﬁi + Kﬁi + Kﬁﬁj + niqjﬁj — fqi + 6¢D¢¢ + (/9\¢,D7;1[1 =0,
N'D;E + KE — KiII + D;E% + Oyn'D; = 0,
(1)

where D; is the covariant derivative w.r.t. ;;, K;; = D;n; is the extrinsic
curvature of the constant time slices, and g; = n* Dy.n;.

m The transformation of the renormalized action under local anisotropic boundary
Weyl transformations leads to the trace Ward identity

z§+ﬁ§+A_¢@¢f,u@¢=0, w#0,
zé\—kﬁ%—i—A_zp@w:A, n=0,

where A is the conformal anomaly, corresponding to all terms satisfying
Ck’g +60—mA_ =0.
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Outline

Examples
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d =z = 2 EP model

m The recursion relations are algebraic in this case and lead to the asymptotic

solution

S— /dQ;vdt (%) + £l5.0) + 7oL 2) + oLy o))

where r,, is the radial cutoff and

0
L o)

L(2.0)

L2

Ll1.0)
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V=

2K2

V=1 1 V=1 1
¥ (R — 2Dqu + Eqqu> ~ 1o (R + Equk) )

6

262 2 2K2 2
/= 3 - 1
v (Klekl + QHkaK + §K2) ~ Q (Klekl _ §K2> ;

2k2 2k2

V=1 1 1 1 2
1 {(Diqj + 500~ 5 (Dqu + Eqqu»

2K2 4

i\ 1 2
—— ( DLg* — Zqi0* —Ra,q* » ~0
2( 20| 2QkQ> +2 QkQ}
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m The anisotropic Weyl anomaly therefore is (see also [Baggio, de Boer, Holsheimer '11;
Griffin, Hofava, Melby-Thompson '11])

A= v (Klekl - %K2>

2K2

m This is one of the two possible non-trivial cocycles that can appear for d = z = 2
with this field content, the other one being the invariant
2
V=7 (R+Dy")

involving only spatial derivatives.

m The algorithm gives the logarithmic contributions to £ in terms of Weyl cocycles
plus total derivative terms. However, evaluating the trace Ward identity expresses
the anomaly directly in terms of Weyl cocycles.
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d=z=2,u=0EPD model

m Keeping the an asymptotically constant dilaton (i.e. = 0) leads to a solution of

the form

where £9

Llho) =

|. Papadimitriou

0y £¢

S= /d adte? (LYo + L 0) + oLl 2) + 1oL ) )

and £9 are as for EP model, while now

(2,0) (2,2)

/=5 1 ( . 1,.>2 1( e 1y )2
- R — Dligd) — —qig? ~(R-2D -
o2 4 q 2qq +2 k4 +2q Uk

1 1
Z(R+ =(q%qx — 2Dig"
+4( +2(q o S| ))
1
_(R_2Dqu+5quk) (R Dyq* + q Qk)
1 1 2
—— (R=3DLg* + =g*
8( kd +2q CIk)
1 1 5 K)o, 1 k B\Z
+—(R+5qqk+Dkq + = (R—d*q + Dya")

24

/=~ 1
T 2k2 16

(r+0t)’
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m The anisotropic Weyl anomaly in this case therefore is

_ VY s kl Lo 1 £\ 2
A= Te? | (KM — oK —1—6(R+Dkq)

which includes both possible cocycles for d = z = 2.

= To my knowledge this is the only known model where the potential term actually
contributes to the anomaly.
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Outline

Concluding remarks
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Concluding remarks

m Lifshitz QFT can be defined covariantly in terms of a background metric and a
1-form that describes the time foliation.

m Lifshitz scale anomalies correspond to the relative cohomology of the anisotropic
Weyl operator with respect to foliation preserving diffeomorphims.

m As for relativistic theories, Lifshitz scale anomalies in theories with a weakly
coupled holographic dual correspond to the logarithmically divergent counterterms
that explicitly depend on the radial cutoff.

m Such terms can be computed systematically using a general recursive procedure
for solving the radial Hamilton-Jacobi equation.
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