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Motivation

Lifshitz symmetry is realized in QFTs close to a second order phase transition,
e.g. quantum critical points. Relevant for real materials such as high Tc
superconductors.

Quantum anomalies are physical aspects of QFTs dictating the form of contact
terms in correlation functions and impacting on physical observables such as
transport coefficients, even in flat space!

Local Weyl anomalies are also related to RG flows and the c/a-theorem.

A significant part of our understanding of Lifshitz theories has come from
holography.
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Wess-Zumino consistency conditions

In the local RG description of QFT [Osborn ’93] couplings are promoted to local
fields:

S[{g(x)}; {ϕ(x)}]

Global symmetries of the classical action S are promoted to gauge symmetries
under which the local couplings transform: space-time symmetries are promoted
to local diffeomorphisms and global internal symmetries to Yang-Mills/Maxwell
gauge symmetries.

The classical action is invariant under an infinitesimal gauge transformation
parameterized by χα, i.e.

δχαS[{g(x)}; {φ(x)}] = 0

but the quantum effective action W [{g(x)}; {φ(x)}] generically will transform
anomalously under such transformations:

δχαW [{g(x)}] = Aχα [{g(x)}]
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The anomalies Aχα must satisfy the Wess-Zumino condition

δχαAχβ − δχβAχα =
(
δχαδχβ − δχβ δχα

)
W [{g(x)}]

= δ[χα,χβ ]W [{g(x)}] = A[χα,χβ ][{g(x)}]

A trivial solution of this condition is one corresponding to Aχα being itself a gauge
transformation of a local functional of the couplings, i.e.

Aχα = δχαG[{g(x)}]

Anomalies of this form are unphysical since they can be removed by adding
−G[{g(x)}] as a counterterm to the generating functional W [{g(x)}].
The space of possible physical anomalies is the space of all solutions to the WZ
consistency condition modulo gauge transformations of local functionals.

This problem can be formulated formally as a cohomology problem by introducing
a Grassmann-valued BRST-like ghost.
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Ward identities

In the local RG formulation of QFT the local couplings act as sources of local
operators, which can be defined as

Og(x) ∼
δW [{g}]
δg(x)

This definition of local operators leads to the anomalous Ward identities:

δχW [{g}] =
∑
g

ˆ
δχg(x)Og(x) = Aχ

where δχg(x) denotes the transformation of the local couplings under the gauge
transformation parameterized by χ.
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Isotropic (relativistic) Weyl anomalies

In order to gauge the Poincaré group in a relativistic QFT we introduce a metric
g(0)ij(x) and define the theory covariantly on the resulting manifold so that the
action is invariant under local diffeomorphisms:

δξg(0)ij(x) = D(0)iξj +D(0)jξi, δσϕ(0)(x) = Lξϕ(0)

In a classically scale invariant QFT we also promote scaling transformations to
local Weyl transformations:

δσg(0)ij(x) = 2δσ(x)g(0)ij(x), δσϕ(0)(x) = −(d−∆)δσ(x)ϕ(0)(x)

Inserting these transformations of the local couplings in the above general Ward
identity leads to the familiar diffeomorphism and trace Ward identities of a
relativistic QFT:

D(0)iT ij +O∂jϕ(0) = 0, T ii + (d−∆)ϕ(0)O = A

where the stress tensor and the operator O(x) are defined via the relations

T ij := −
2

√
g(0)

δW

δg(0)ij

, O :=
1

√
g(0)

δW

δϕ(0)
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The possible contributions to the trace anomaly A are determined by the relative
cohomology problem of the Weyl operator δσ with respect to diffeomorphisms, i.e.
non-trivial cocycles in the cohomology of δσ built out of diffeomorphism invariants
[Bonora, Pasti, Tonin ’86].

For relativistic theories it is known that:
for odd dimensions there are no Weyl anomalies (except for possible pure matter
contributions)

for even dimensions there are two types of Weyl anomalies: the Euler density (type A)
and the various Weyl invariants in the corresponding dimension (type B).

This cohomological problem determines all possible terms that can appear in the
conformal anomaly, but does not fix their coefficients, which depend on the
particular theory.

In the presence of matter sources writing down all possible diffeomorphism
invariants of the right dilatation weight becomes more complicated.
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Anisotropic (Lifshitz) Weyl anomalies

The analogous problem for anisotropic Weyl transformations has been studied
holographically in a number of recent works (e.g. [Baggio, de Boer, Holsheimer ’11;
Griffin, Hořava, Melby-Thompson ’11]) and purely cohomologically by [Arav, Chapman,
Oz ’14].

In Lifshitz theories time is singled out due to the anisotropic scaling symmetry
governed by the dynamical exponent z 6= 1.

A Lifshitz QFT is therefore naturally described on a manifold with a metric g(0)ij

together with a codimension-1 foliation specified locally by a 1-form ti that
satisfies the Frobenius integrability condition

t ∧ dt = 0

Below we will make extensive use of the normalized foliation 1-form

ni ∝ ti, nin
i = −1

Note: a somewhat different covariantization of Lifshitz theories, corresponding to
gauging the Schrödinger algebra, has been put forward in [Hartong, Kiritsis, Obers
’14; Bergshoeff, Hartong, Rosseel ’14; Hartong, Kiritsis, Obers ’15]
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The local symmetries under which the background fields g(0)ij and ti transform
are diffeomorphisms:

δξg(0)ij(x) = D(0)iξj +D(0)jξi, δξti = Lξti = ξjD(0)jti +D(0)iξ
jtj

a subset of which are foliation preserving, i.e. Lξti ∝ ti, and anisotropic Weyl
rescalings:

δσti = 0, δσni = zδσni, δσni = −zδσni, δσ�ij = 2δσ�ij

where �ij = g(0)ij + ninj is the projector to the tangent space of the foliation.

These transformations lead respectively to the diffeomorphism and anisotropic
Weyl Ward identities (in the notation of [Arav, Chapman, Oz ’14])

D(0)jT
j
i − 2∂[inj]J j + niD(0)jJ j = 0, �ijT ij − zninjT ij = A

where
T ij ∼

2√
−g(0)

δW

δg(0)ij

, J i ∼
1√
−g(0)

δW

δti
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The possible contributions to the anisotropic Weyl anomaly A can be determined
by the relative cohomology of the anisotropic dilatation operator δσ with respect to
foliation preserving diffeomorphisms.

All possible contributions can be expressed in terms of the following geometric
data [Chemissany, I.P. ’14; Arav, Chapman, Oz ’14]:

�ij , qi = njDjni, Kij =
1

2
Ln�ij , Rijkl[�]

as well as time, Ln, and spatial Di, derivatives of any of these tensors and any
additional matter fields.

The cohomological problem involves writing down the all possible diffeomorphism
invariant combinations of the correct dilatation weight and does not determine the
coefficients of the allowed terms.
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Holographic computation of Weyl anomalies
[Henningson, Skenderis ’98]

Local sources arise as integration functions in the asymptotic solutions of the
equations of motion.

The gauge transformations of these sources correspond to the subset of
asymptotic bulk diffeomorphims leaving the asymptotic expansions form-invariant,
i.e. Penrose-Brown-Henneaux (PBH) diffeomorphisms.

Conformal anomalies arise due to local counterterms that explicitly depend on the
UV cutoff.
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Lifshitz geometry

The Lifshitz (Lif) metric is [Kachru, Liu, Mulligan ’08]

ds2d+2 = `2u−2
(
du2 − u−2(z−1)dt2 + dxadxa

)
with dynamical exponent z 6= 1

This metric is invariant under the scaling transformation

xa → λxa , t→ λzt , u→ λu

The conformal boundary is located at u = 0

The null energy condition

Tµνk
µkν ≥ 0, kµkµ = 0

requires
z ≥ 1
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Einstein-Proca-Dilaton (EPD) model

Sξ =
1

2κ2

ˆ
M
dd+2x

√
−gedξφ

(
R[g]− αξ∂µφ∂µφ− Zξ(φ)F 2 −Wξ(φ)B2 − Vξ(φ)

)
The Stückelberg ω renders the vector field

Bµ = Aµ − ∂µω

invariant under the U(1) transformation

Aµ → Aµ + ∂µΛ, ω → ω + Λ

We work in the “dual frame” so that asymptotically locally Lifshitz boundary
conditions generically correspond to asymptotically hyperscaling violating Lifshitz
boundary conditions in the Einstein frame.
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Lifshitz solutions

This model admit Lif or hvLf solutions at least asymptotically provided the
potentials are of the form

Vξ = Voe
2(ρ+ξ)φ, Zξ = Zoe

−2(ξ+ν)φ, Wξ = Woe
2σφ

The parameters are related to the parameters of the Lif solutions

ds2 = dr2 − e2zrdt2 + e2rd~x2, A =
Q
εZo

eεrdt, φ = µr, ω = const.

as

ρ = −ξ, ν = −ξ +
ε− z
µ

, σ =
z − ε
µ

,

ε =
(αξ + d2ξ2)µ2 − dµξ + z(z − 1)

z − 1
, Q2 =

1

2
Zo(z − 1)ε,

Wo = 2Zoε(d+ z + dµξ − ε), Vo = −d(1 + µξ)(d+ z + dµξ)− (z − 1)ε.
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Radial Hamiltonian formalism

ADM decomposition

ds2 = (N2 +NiN
i)dr2 + 2Nidrdx

i + γijdx
idxj

Radial ADM Lagrangian:

L =
1

2κ2

ˆ
dd+1x

√
−γNedξφ

{
R[γ] +K2 −KijKij +

2dξ

N
K(φ̇−N i∂iφ)

−
αξ

N2

(
φ̇−N i∂iφ

)2
− αξγij∂iφ∂jφ

−Zξ(φ)

(
2

N2
γij(Fri −NkFki)(Frj −N lFlj) + γijγklFikFjl

)
−Wξ(φ)

(
1

N2

(
Ar −N iAi − ω̇ +N i∂iω

)2
+ γijBiBj

)
− Vξ(φ)

}
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First class constraints

Hamiltonian:

H =

ˆ
dd+1x

(
γ̇ijπ

ij + Ȧiπ
i + φ̇πφ + ω̇πω

)
− L

=

ˆ
dd+1x

(
NH+NiHi +ArF

)
where

H = −
κ2

√
−γ

e−dξφ
(

2πijπij −
2

d
π2 +

1

2α

(
πφ − 2ξπ

)2
+

1

4
Z−1
ξ πiπi +

1

2
W−1
ξ π2

ω

)
+

√
−γ

2κ2
edξφ

(
−R[γ] + αξ∂

iφ∂iφ+ Zξ(φ)F ijFij +Wξ(φ)BiBi + Vξ(φ)
)

Hi = −2Djπ
ji + F ijπ

j + πφ∂
iφ−Biπω

F = −Diπi + πω
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Canonical momenta

From off-shell Lagrangian:

πij =
δL

δγ̇ij
=

1

2κ2

√
−γedξφ

(
Kγij −Kij +

dξ

N
γij
(
φ̇−Nk∂kφ

))
,

πi =
δL

δȦi
= −

1

2κ2

√
−γedξφZξ(φ)

4

N
γij
(
Frj −NkFkj

)
,

πφ =
δL

δφ̇
=

1

2κ2

√
−γedξφ

(
2dξK −

2αξ

N
(φ̇−N i∂iφ)

)
,

πω =
δL

δω̇
= −

1

2κ2

√
−γedξφWξ(φ)

2

N

(
ω̇ −N i∂iω −Ar +N iAi

)
From on-shell action:

πij =
δS
δγij

, πi =
δS
δAi

, πφ =
δS
δφ
, πω =

δS
δω
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Flow equations

Combining the two expressions for the momenta:

γ̇ij = −
4κ2

√
−γ

e−dξφ
((

γikγjl −
αξ + d2ξ2

dα
γijγkl

)
δ

δγkl
−

ξ

2α
γij

δ

δφ

)
S,

Ȧi = −
κ2

2

1
√
−γ

e−dξφZ−1
ξ (φ)γij

δ

δAj
S,

φ̇ = −
κ2

α

1
√
−γ

e−dξφ
(
δ

δφ
− 2ξγij

δ

δγij

)
S,

ω̇ = −
κ2

√
−γ

e−dξφW−1
ξ (φ)

δ

δω
S
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Zero derivative solution of the HJ equation

The zero order solution of the HJ equation contains no transverse derivatives:

S(0) =
1

κ2

ˆ
dd+1x

√
−γU(φ,AiA

i)

Inserting this ansatz into the Hamiltonian constraint yields a PDE for U(X,Y ),
where X := φ, Y := BiB

i = AiA
i (cf. superpotential equation)

1

2α
(UX − ξ(d+ 1)U + 2ξY UY )2 + Z−1

ξ (X)Y U2
Y

−
1

2d
((d+ 1)U + 2(d− 1)Y UY ) (U − 2Y UY ) =

1

2
e2dξX

(
Wξ(X)Y + Vξ(X)

)
This equation for the ‘superpotential’ U(X,Y ) determines the zero derivative
solution of the Hamilton-Jacobi equation: It can be used to holographically
renormalize any homogeneous background of the equations of motion and any
exact solution of this PDE leads to exact solutions of the equations of motion via
the flow equations.
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Asymptotically locally Lifshtiz backgrounds

Imposing Lifshitz boundary conditions requires that asymptotically the gauge
invariant vector field behaves as

Bi ∼ Boi =

√
z − 1

2ε
Z
−1/2
ξ (φ)ni

where ni is the canonically normalized time foliation 1-form.

This in turn implies that the superpotential U(X,Y ) must satisfy

U(X,Yo(X)) ∼ edξX (d(1 + µξ) + z − 1)

UY (X,Yo(X)) ∼ −εedξXZξ(X)

UX(X,Yo(X)) ∼ edξX
(
−µαξ + dξ(d+ z)

)
Hence, the asymptotic form of the zero order solution of the HJ equation is

S(0) ∼
1

κ2

ˆ
Σr

dd+1x
√
−γedξφ

(
d(1 + µξ) +

1

2
(z − 1)− εZξ(φ)BiB

i

)
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Taylor expansion of the superpotential

Since Lifshitz boundary conditions require that Bi ∼ Boi asymptotically, the
solution of the HJ equation can be expressed as a Taylor series in Bi −Boi
The zero derivative solution S(0) can be Taylor expanded in

Y − Yo = 2Bio(Bi −Boi) +O(B −Bo)2

where Yo ≡ BioBoi, as

U = e(d+1)ξφ
(
u0(φ) + Y −1

o u1(φ)(Y − Yo(φ)) + Y −2
o u2(φ)(Y − Yo(φ))2 + · · ·

)
Inserting this expansion in the superpotential equation for U(X,Y ) leads to a
tower of equations for the functions un(φ)
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An additional relation between the functions u0(φ) and u1(φ) is imposed by the
consistency of the Taylor expansion, i.e. requiring that

Ẏ − Ẏo = O(Y − Yo)

In a bottom up approach these equations can be used to define the potentials
V (φ), Z(φ) and W (φ) in terms of u0(φ) and u1(φ), with all un(φ) for n ≥ 2 being
determined in terms of these functions.

Lifshitz boundary conditions require

u0(φ) ∼ (z − 1 + d(1 + µξ)) e−ξφ

u1(φ) ∼
1

2
(z − 1)e−ξφ

The function u2(φ) satisfies a quadratic (Riccati) equation and determines the
scaling behavior of the independent mode Y − Yo, while un(φ) with n ≥ 3 satisfy
linear equations.
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Recursive solution of the HJ equation

To summarize the above analysis, we have shown that the most general zero
derivative solution of the HJ equation takes the form

S(0) =
1

κ2

ˆ
Σr

dd+1x
√
−γU(φ,B2)

where for Lifshitz boundary conditions the superpotential U(X,Y ) admits a Taylor
expansion in Y − Yo. Moreover, this zero derivative solution is the asymptotically
leading one, with derivative terms entering only in asymptotically subleading
orders.

In order to systematically determine these asymptotically subleading derivative
terms of the solution of the HJ equation, we expand S in a covariant expansion in
eigenfunctions of a suitable operator.

For backgrounds with asymptotic scaling invariance one can use the dilatation
operator [I. P. & Skenderis 2004] but in the presence of an asymptotically running
dilaton, meaning that asymptotic scale invariance is broken, this is not sufficient.

Instead we need an operator such that S(0) is an eigenfunction for any
superpotential U(φ,B2).
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In fact there are two mutually commuting such operators:

δ̂ :=

ˆ
dd+1x

(
2γij

δ

δγij
+Bi

δ

δBi

)
, δB :=

ˆ
dd+1x

(
2Y −1BiBj

δ

δγij
+Bi

δ

δBi

)
which satisfy

δ̂S(0) = (d+ 1)S(0), δBS(0) = S(0), [δ̂, δB ] = 0

This allows us to seek a solution of the HJ equation in the form of a graded
covariant expansion in simultaneous eigenfunctions of both δ̂ and δB :

S =
∞∑
k=0

S(2k) =
∞∑
k=0

k∑
`=0

S(2k,2`) =
∞∑
k=0

k∑
`=0

ˆ
dd+1xL(2k,2`)

where

δ̂S(2k,2`) = (d+ 1− 2k)S(2k,2`), δBS(2k,2`) = (1− 2`)S(2k,2`), 0 ≤ ` ≤ k

The operator δ̂ counts derivatives

The operator δB annihilates the projection operator σij := δij − Y −1BiBj and
counts derivatives contracted with Bi, which asymptotically become time
derivatives since Bi ∼ Boi ∝ ni
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Linear recursion equations

Inserting the covariant expansion of S in simultaneous eigenfunctions of δ̂ and δB
in the Hamilton-Jacobi equation (Hamiltonian constraint) results in a system of
recursive first order functional linear equations for the higher derivative terms:

1

α
(UX − (d+ 1)ξU + 2ξY UY )

δ

δφ

ˆ
L(2k,2`)+(

(2Y + Z−1
ξ )UY +

1

dα

(
αξU − 2(αξ + d2ξ2)Y UY + dξUX

))
Bi

δ

δBi

ˆ
L(2k,2`)−(

1

dα

(
αξU − 2(αξ + d2ξ2)Y UY + dξUX

)
(d+ 1− 2k) + 2Y UY (1− 2`)

)
L(2k,2`) =

edξφR(2k,2`)

The inhomogeneous term R(2k,2`) involves derivatives of lower order terms as
well as the 2-derivative sources from the Hamiltonian constraint
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Lifshitz boundary conditions

The covariant expansion of S in simultaneous eigenfunctions of δ̂ and δB , and
hence the above recursion relations, is independent of the specific choice of
boundary conditions

In order to impose Lifshitz boundary conditions we must additionally expand
S(2k,2`) in Bi −Boi at each order of the covariant expansion as

L(2k,2`) = L0
(2k,2`)[γ(x), φ(x)]

+

ˆ
dd+1x′(Bi(x

′)−Boi(x′))L1i
(2k,2`)[γ(x), φ(x);x′] +O (B −Bo)2

Inserting this Taylor expansion in the above recursion relations eliminates the
derivative with respect to Bi, resulting in first order linear functional differential
equations in φ only. Such functional differential equations appear in the relativistic
case as well, e.g. for non-conformal branes or Improved Holographic QCD, and
they can be solved systematically [I.P. ’11].
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Solution of the recursion relations up to O(B −Bo)

The inhomogeneous solution of these linear functional differential equations takes
the form

L0
(2k,2`) = e−Ck,`A(φ)

ˆ φ
dφ̄K(φ̄)eCk,`A(φ̄)R0

(2k,2`),

�ijL
1j
(2k,2`)

= Z
1
2
ξ e
−Ck,`A(φ)

ˆ φ
dφ̄K(φ̄)eCk,`A(φ̄)Z

− 1
2

ξ �ijR
1j
(2k,2`)

,

Boj(x)L1j
(2k,2`)

= Ω−1e−Ck,`A(φ)

ˆ φ
dφ̄K(φ̄)eCk,`A(φ̄)ΩBojR̂1j

(2k,2`)

where Ck,` := d+ 1− 2k + (z − 1)(1− 2`),

K(φ) :=
α

eξφ
(
u′0 + Z′

Z
u1

) ∼ − 1

µ
, eA(φ) = Z

− 1
2(ε−z)

ξ ∼ eφ/µ

and the Ω(φ) can be expressed in terms of u0, u1 and u2.

If µ = 0 (e.g. for Einstein-Proca theory) the corresponding solutions can be
expressed algebraically in terms of the source terms.
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Structure of the HJ solution

The general asymptotic solution of the HJ equation obtained via the above
algorithm takes the form

S =
∑

k,`,m | Ck,`+θ−m∆−≥0

ˆ
· · ·
ˆ

(B −Bo)mSm(2k,2`) + Ŝren + · · ·

where ∆+ = d+ z − θ −∆− is the scaling dimension of the scalar operator dual
to the mode

ψ := Y −1
o Bjo(Bj −Boj)

and (B −Bo)mSm(2k,2`) has dilatation weight Ck,` + θ −m∆−, while Ŝren has
dilatation weight 0.

All terms (B −Bo)mSm(2k,2`) with Ck,` + θ −m∆− ≥ 0 are determined by the
recursion algorithm.

For Ck,` + θ −m∆− < 0 these terms are powerlike divergent in the UV, while
terms with Ck,` + θ −m∆− = 0 have a pole which via dimensional regularization
leads to a logarithmic divergence. Such logarithmically divergent terms give rise to
the conformal anomaly when µ = 0, but they can be absorbed in the dilaton when
µ 6= 0.
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The covariant local counterterms that render the on-shell action finite and the
variational problem with Lifshitz boundary conditions well posed are

Sct := −
∑

k,`,m | Ck,`+dµξ−m∆−≥0

ˆ
· · ·
ˆ

(B −Bo)mSm(2k,2`)

The renormalized part of the on-shell action is therefore given by the UV-finite
term Ŝren, which corresponds to an independent contribution to the HJ solution
and can be parameterized as

Ŝren =

ˆ
dd+1x

(
γij π̂

ij +Biπ̂
i + φπ̂φ

)
where π̂ij , π̂i and π̂φ are undetermined integration functions of the HJ equation.
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Sources & VEVs

Inserting this general asymptotic solution of the HJ equation, including the
undetermined term Ŝren, in the first order flow equations one can systematically
derive the generalized asymptotic Fefferman-Graham expansions for the bulk
fields, including the sources and 1-point functions of the dual operators.

The sources generically correspond to integration constants of the flow equations,
while the 1-point functions are related to the integration constants of the HJ
solution in Ŝren.

Decomposing the induced fields as

γijdx
idxj = −(n2−nana)dt2+2nadtdx

a+σabdx
adxb, Aidx

i = adt+Aadx
a,

where the indices a, b run from 1 to d, and introducing the linear combinations

T̂ ij := −
e−dξφ
√
−γ

(
2π̂ij + Y −1

o BioB
j
oBokπ̂

k
)
,

Ôφ :=
e−dξφ
√
−γ

(
π̂φ + (ν + ξ)Boiπ̂

i
)
,

Ôψ :=
e−dξφ
√
−γ

Boiπ̂
i, Êi :=

e−dξφ
√
−γ

√
−Yo�ij π̂j ,

the full set of sources and VEVs is (cf. energy-momentum complex [Ross ’09]):
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1-point function source

spatial stress tensor Π̂ij := �ik�jlT
kl ∼ e−(d+z−θ)rΠij(x) σ(0)ab

momentum density P̂i := −�iknlT
kl ∼ e−(d+2−θ)rPi(x) n(0)a

energy density Ê := −nknlT kl ∼ e−(d+z−θ)rE(x) n(0)

energy flux Êi ∼ e−(d+2z−θ)rEi(x) 0

dilaton Ôφ ∼ e−(d+z+dµξ)rOφ(x) φ(0)

composite scalar Ôψ ∼ e−∆+rOψ(x) ψ−
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Holographic Ward identities

The momentum constraint of the radial Hamiltonian formalism leads to the
diffeomorphism Ward identities

DjΠ̂
i
i + qjΠ̂

j
i + njDjP̂i + KP̂i + KiiP̂j + niqjP̂j − Êqi + ÔφDiφ+ ÔψDiψ = 0,

niDiÊ + KÊ − KijΠ̂
j
i + DiÊi + ÔφniDiφ = 0,

(1)

where Di is the covariant derivative w.r.t. �ij , Kij = Dinj is the extrinsic
curvature of the constant time slices, and qi = nkDkni.

The transformation of the renormalized action under local anisotropic boundary
Weyl transformations leads to the trace Ward identity

zÊ + Π̂ii + ∆−ψÔψ − µÔφ = 0, µ 6= 0,

zÊ + Π̂ii + ∆−ψÔψ = A, µ = 0,

where A is the conformal anomaly, corresponding to all terms satisfying
Ck,` + θ −m∆− = 0.
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d = z = 2 EP model

The recursion relations are algebraic in this case and lead to the asymptotic
solution

S =

ˆ
d2xdt

(
L0

(0) + L0
(2,0) + roL0

(2,2) + roL0
(4,0)

)
where ro is the radial cutoff and

L0
(0) =

√
−γ

2κ2
6,

L0
(2,0) =

√
−γ

2κ2

1

2

(
R− 2Dkq

k +
1

2
qkqk

)
'
√
−γ

2κ2

1

2

(
R +

1

2
qkqk

)
,

L0
(2,2) =

√
−γ

2κ2

(
KklKkl + 2nkDkK +

3

2
K2

)
'
√
−γ

2κ2

(
KklKkl −

1

2
K2

)
,

L0
(4,0) =

√
−γ

2κ2

1

4

{(
Diqj +

1

2
qiqj −

1

2
�ij

(
Dkq

k +
1

2
qkq

k

))2

−
1

2

(
Dkq

k −
1

2
qkq

k

)2

+
1

2
Rqkq

k

}
' 0
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The anisotropic Weyl anomaly therefore is (see also [Baggio, de Boer, Holsheimer ’11;
Griffin, Hořava, Melby-Thompson ’11])

A =

√
−γ

2κ2

(
KklKkl −

1

2
K2

)
This is one of the two possible non-trivial cocycles that can appear for d = z = 2
with this field content, the other one being the invariant

√
−γ
(
R + Dkq

k
)2

involving only spatial derivatives.

The algorithm gives the logarithmic contributions to L in terms of Weyl cocycles
plus total derivative terms. However, evaluating the trace Ward identity expresses
the anomaly directly in terms of Weyl cocycles.
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d = z = 2, µ = 0 EPD model

Keeping the an asymptotically constant dilaton (i.e. µ = 0) leads to a solution of
the form

S =

ˆ
d2xdteφ

(
L0

(0) + L0
(2,0) + roL0

(2,2) + roL0
(4,0)

)
where L0

(0)
, L0

(2,0)
and L0

(2,2)
are as for EP model, while now

L0
(4,0) =

√
−γ

2κ2

1

4

{(
Rij − D(iqj) −

1

2
qiqj

)2

+
1

2

(
R− 2Dkq

k +
1

2
qkqk

)2

+
1

4

(
R +

1

2
(qkqk − 2Dkq

k)

)2

−
(
R− 2Dkq

k +
1

2
qkqk

)(
R−Dkqk +

1

2
qkqk

)
−

1

8

(
R− 3Dkq

k +
1

2
qkqk

)2

+
1

24

(
R +

1

2
qkqk +Dkq

k

)2

+
1

12

(
R− qkqk +Dkq

k
)2
}

' −
√
−γ

2κ2

1

16

(
R + Dkq

k
)2
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The anisotropic Weyl anomaly in this case therefore is

A =

√
−γ

2κ2
eφ
[(

KklKkl −
1

2
K2

)
−

1

16

(
R + Dkq

k
)2
]

which includes both possible cocycles for d = z = 2.

To my knowledge this is the only known model where the potential term actually
contributes to the anomaly.
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Concluding remarks

Lifshitz QFT can be defined covariantly in terms of a background metric and a
1-form that describes the time foliation.

Lifshitz scale anomalies correspond to the relative cohomology of the anisotropic
Weyl operator with respect to foliation preserving diffeomorphims.

As for relativistic theories, Lifshitz scale anomalies in theories with a weakly
coupled holographic dual correspond to the logarithmically divergent counterterms
that explicitly depend on the radial cutoff.

Such terms can be computed systematically using a general recursive procedure
for solving the radial Hamilton-Jacobi equation.

I. Papadimitriou Holographic Lifshitz scale anomalies 41 / 41


	Anomalies from cohomology
	Holographic Lifshitz theories from EPD gravity
	Examples
	Concluding remarks

