
Outline Motivations Backgrounds Constructions Applications 1 Application 2 Conclusion

Holographic conserved charges of rotating black holes

Jaehoon Jeong

Aristotle University of Thessaloniki

Aspects of fluid/gravity correspondence

based on the work [arXiv:1406.7101], [arXiv:1410.1312]
with S. Hyun, S.-A. Park, S.-H. Yi

Holographic conserved charges of rotating black holes Aristotle University of Thessaloniki



Outline Motivations Backgrounds Constructions Applications 1 Application 2 Conclusion

Motivations

Backgrounds

Constructions

Bulk ADT charges

Boundary conserved charges

Equivalence: bulk ADT potential & boundary off-shell current

Applications 1

Model

The radial expansion

Application to black hole solutions

Application 2

Frame independent

Conclusion

Holographic conserved charges of rotating black holes Aristotle University of Thessaloniki



Outline Motivations Backgrounds Constructions Applications 1 Application 2 Conclusion

Motivations

Conserved charges in the gravity side
I We have consistent definitions for ‘global’ charges in general relativity.

I ADM - asymptotically flat spacetime in Einstein gravity [’62 Arnowitt, Deser,

Misner]
I ADT - asymptotic conserved charges are obtained in a covariant manner

useful for the asymptotically AdS space-time in Einstein as well as general
higher derivative theories of gravity. [’82 Abbott, Deser]

I covariant phase space method [’94 Iyer, Wald],...

I Conserved charges at the ‘quasi-local’ level are established.
I In Einstein gravity [’01 Barnich, Brandt]

I In covariant theory of gravity [’13 Kim, Kulkarni, Yi]

Holographic conserved charges in the Asymptotic AdS

I Boundary stress tensor method to obtain holographic charges consistent
with the dual field theory. [’99 Balasubramanian, Kraus]

Connection between traditional & holographic approach?

I Verified in asymptotically AdS geometry in Einstein gravity.
[’05 Papadimitriou, Skenderis], [’05 Hollands, Ishibashi, Marolf]
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Backgrounds

Abbott-Deser-Tekin (ADT) formalism [’82 Abbott, Deser]

I Asymptotic conserved charges are obtained in a covariant manner.

I Depends on the bulk Euler-Lagrange expression.

I Assuming the fast falloff behaviors of matter fields at the asymptotic
infinity.

I Construct the covariant conserved quantity : on-shell ADT current

J µ = δGµνξν , ∂µ(
√
−gJ µ|on) = 0

where ξ : Killing vector, Gµν : generalized Einstein tensor.

I Construct the ADT potential using Poincaré lemma : J µ|on = ∇νQµνADT
I Obtain the conserved (global) Killing charges

δQ(ξ) =
1

8πG

∫
B
dD−2dxµν

√
−g QµνADT
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Backgrounds

On-shell ADT current J µ : background dependent ⇒ needs to be extended.
[’13 Kim, Kulkarni, Yi]

I Off-shell ADT current (δξµ = 0) [’07 Bouchareb, Clément], [’10 Nam, Park, Yi]

J µADT = δGµνξν +
1

2
gαβδgαβGµνξν + Gµνδgνρξρ −

1

2
ξµGαβδgαβ

which is identically conserved.

∂µ(
√
−gJ µADT ) = 0

I ADT potential : J µADT = ∇νQµνADT
I Obtain the quasi-local conserved charges with one-parameter path in the

solution space.

Q(ξ) =
1

8πG

∫ 1

0

ds

∫
B
dD−2dxµν

√
−gQµνADT (g; ξ|s)

⇒ Needs to be extended for the theory containing matter fields slow falling off.
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Construction: bulk ADT charges

Off-shell ADT current for Killing vector ξ in the presence of matter fields [’14

Hyun, JJ, Park, Yi]

√
−gJ µADT =

√
−g
[
δEµνξν +

1

2
gαβδgαβ E

µνξν + Eµνδgνρ ξ
ρ +

1

2
ξµEΨδΨ

]
= δ

(√
−gEµνξν

)
+

1

2

√
−g ξµEΨδΨ

I where EΨδΨ ≡ Eαβδgαβ + Eψδψ
I Identically conserved : ∂µ(

√
−gJ µADT ) = 0

I ADT potential : J µADT = ∇νQµνADT

Quasi-local conserved charges

Q(ξ) =
1

8πG

∫ 1

0

ds

∫
B
dD−2dxµν

√
−gQµνADT (g; ξ|s)
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Construction: bulk ADT charges

Off-shell ADT current J µADT in the presence of matter fields.

I Consider a theory of gravity with arbitrary matter fields ψ = (φI , Aµ, · · · )

I[g, ψ] =
1

16πG

∫
dDx
√
−gL(g, ψ)

I for the generic variation

δI[g, ψ] =
1

16πG

∫
dDx

[√
−g
(
Eµνδgµν + Eψδψ

)
+ ∂µΘµ(δg, δψ)

]
I for the diffeomorphism variation

δζ(
√
−gL) =

√
−g
(
− Eµνδζgµν + Eψδζψ

)
+ ∂µΘµ(δg, δψ)

=
√
−g
(
2ζν∇µEµν + Eψ£ζψ

)
+ ∂µ

(
Θµ − 2

√
−gEµνζν

)
= ∂µ

(
Θµ − 2

√
−gEµνζν +

√
−gZµνζν

)
= ∂µ

(
Θµ − 2

√
−gEµνζν

)
with Eµν ≡ Eµν − 1

2
Zµν

= ∂µ
(
ζµ
√
−gL

)
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Comparison: covariant phase space approach

Connection between the off-shell ADT formalism and the covariant phase space
method?

I Off-shell Noether current & potential

Jµ(ζ) = 2
√
−gEµνζν + ζµ

√
−gL −Θµ(£ζg,£ζψ) ≡ ∂νKµν

I Symplectic current in the covariant phase space formalism. [’90 Lee, Wald]

ωµ(δ1Ψ , δ2Ψ) ≡ δ2Θµ(δ1Ψ)− δ1Θµ(δ2Ψ)

I Using above, finally comes

2
√
−gJ µADT (ζ, δΨ) = ∂ν

(
δKµν(ζ)− 2ζ [µΘν](δΨ)

)
− ωµ(£ζΨ , δΨ)

And for Killing vector ξ

2
√
−g QµνADT (ξ, δΨ) = δKµν(ξ)− 2ξ[µΘν](δΨ) ≡Wµν(ξ, δΨ)

where Wµν : potential in the covariant phase space approach.
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Construction: boundary conserved charges

Boundary current in the asymptotic AdS space

I Consider the renomalized action

Ir[g, ψ] = I[g, ψ] + IGH [γ] + Ict[γ, ψ]

with radial decomposed metric

ds2 = gµνdx
µdxν = N2dr2 + γij(r, x)(dxi +N idr)(dxj +N jdr)

I for the generic variation

δIonr [γ, ψ] =
1

16πG

∫
B
ddx
√
−γ
[
T ijB δγij + Πψδψ

]
I for the boundary diffeomorphism variation

√
−γ
[
T ijB δζγij + Πψδζψ

]
=
√
−γ
[
2ζj∇iT ijB + Πψ£ζψ

]
+ ∂i

(
2
√
−γ T ijB ζj

)
= ∂i

(
2
√
−γ T ijB ζj +

√
−γ ZijB ζj

)
= ∂i

(
2
√
−γTij

Bζj
)

with Tij
B ≡ T

ij
B +

1

2
ZijB
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Construction: boundary conserved charges

Analogous to the bulk case, construct the identically conserved ‘boundary’
current J iB .

I Boundary ADT-like current for a boundary Killing vector ξB

√
−γJ iB(ξB) ≡ − δ

(√
−γTij

Bξ
B
j

)
+

1

2

√
−γ ξiB

(
T klB δγkl + Πψδψ

)
I Boundary conserved charges

QB(ξB) =
1

8πG

∫
∂B
dd−1xi

∫
ds
√
−γ J iB(ξB)

= − 1

8πG

∫
∂B
dd−1xi

√
−γ
(
Tij
B +

1

2
∆A

)
ξBj

where ∆A ≡ A−Avac = 0.

Equivalent with the boundary stress tensor method!
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Equivalence: bulk ADT potential & boundary off-shell current

Relation between bulk & boundary formalisms?

I Fefferman-Graham coordinates for an asymptotically AdS space

ds2 = dη2 + γijdx
idxj

I Modified surface term from renormalized action

Θ̃η(δΨ) = Θη(δΨ)+δ(2
√
−γLGH)+δ(

√
−γLct) =

√
−γ
(
T ijB δγij+Πψδψ

)
I For the diffeomorphism variation £ξΨ

Θ̃η(£ξΨ) =
√
−γ
(

2T ijB ∇iζj + Πψ£ζψ
)

= ∂i
(

2
√
−γTij

B ζj
)

Holographic conserved charges of rotating black holes Aristotle University of Thessaloniki



Outline Motivations Backgrounds Constructions Applications 1 Application 2 Conclusion

Equivalence: bulk ADT potential & boundary off-shell current

Relation between bulk & boundary formalisms?

I Modified Noether current from renormalized action

J̃η = ∂iK̃
ηi(ζ) = ζη

√
−γLonr − Θ̃η(£ζΨ)

I The asymptotic behavior of general diffeomorphism parameter ζ

ζη ∼ O(e−dη) , ζi ∼ O(1)

which is preserving the asymptotic gauge choice and the renormalized
action.

This asymptotic behavior in the diffeomorphism parameter ζ allows us to
discard ζη

√
−γLonr term when we approach the boundary.
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Equivalence: bulk ADT potential & boundary off-shell current

By using this result, one can see that the Noether potential K̃ηi becomes

K̃ηi = 2
√
−γTij

B ζj + ∂j(
√
−γ U ijB ) ,

where U ijB is an arbitrary anti-symmetric second rank tensor irrelevant to
obtaining conserved charges. As a result, the relation between the ADT and
Noether potentials for a Killing vector ξ becomes

√
−gQηiADT |η→∞ = −δ

(√
−γTij

B ξ
B
j

)
+

1

2

√
−γ ξiB

(
T klB δγkl+Πψδψ

)
≡
√
−γJ iB

Q(ξ) =
1

8πG

∫
B
dD−2xηi

∫
ds
√
−gQηiADT

||

QB(ξB) =
1

8πG

∫
∂B
dd−1xi

∫
ds
√
−γ J iB

∴ The bulk potential and the boundary current lead to the same conserved
charges.
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Applications: Model

Consider the model

I[g, φ] =
1

16πG

∫
dDx

√
−g
[
R− 2Λ− 1

2
∂µφ∂

µφ− V (φ)
]

I For the generic variation of the Lagrangian

δ(
√
−gL) =

√
−g
(
Eµνδgµν + Eφδφ

)
+ ∂µΘµ

I EOM are Eµν = 0, Eφ = 0, where

Eµν ≡ GΛ
µν − Tµν

=
[
Rµν −

1

2
gµνR+ Λ gµν

]
−
[1

2
∂µφ∂νφ+

1

2
gµν
(
− 1

2
∂µφ∂

µφ− V (φ)
)]

Eφ ≡ ∇2φ− ∂V

∂φ

I The surface terms

Θµ(δg, δφ) = Θµ
g (δg) + Θµ

φ(δφ) =
√
−g
[

2gα[µ∇β]δgαβ − δφ∂µφ
]
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ADT potential

In this model, the total off-shell ADT potential is given by the sum of the
metric and scalar contributions as

QµνADT (ξ ; δg, δφ) = QµνADT (ξ ; δg) +QµνADT (ξ ; δφ)

QµνADT (ξ ; δg) = − 1

2
gαβδg

αβ∇[µξν] + ξ[µ∇αδgν]α − ξα∇[µδgν]α

− gαβξ[µ∇ν]δgαβ + δgα[µ∇αξν]

QµνADT (ξ ; δφ) = δφ ξ[µ∂ν]φ
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Counter terms and boundary stress tensor

I The generic forms of the GH and counter terms in this model.

The GH term for the Einstein gravity is given by extrinsic curvature scalar at
the boundary K(γ).

LGH = K(γ)

The counter terms Lct(γ, φ) consist of two parts for the pure gravity and for
the scalar field.

Lct = 2Kct(γ) + Φct(φ)

Kct(γ) = − (d− 1)− 1

2(d− 2)
RB −

1

2(d− 4)(d− 2)2

(
RBijR

ij
B −

d

4(d− 1)
R2
B

)
+ · · ·

Φct(φ) = α1 φ
2 + α2 φ

4 + · · ·

where RBij and RB are intrinsic Ricci tensor and scalar at the boundary.
And αk are determined to cancel the divergences in the renormalized action at
the boundary.
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Counter terms and boundary stress tensor

I The resultant form of the boundary stress tensor.

T ijB = T ijg + T ijφ

T ijg = Kγij −Kij − (d− 1)γij +
1

2(d− 2)

(
RijB −

1

2
RBγ

ij

)
+ · · ·

T ijφ =
γij

2

(
α1 φ

2 + α2 φ
4 + · · ·

)
One may note that in this case Tij

B = T ijB , since we are considering a scalar
field only.

I The renormalized momentum of the scalar field.

√
−γΠφ =

√
−γ
[
− ∂ηφ+ 2α1φ+ 4α2φ

3 + · · ·
]
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The radial expansion

In the Fefferman-Graham coordinates for an asymptotically AdS space

ds2 = dη2 + γijdx
idxj

Assumptions

I boundary metric taken to be flat as γ
(0)
ij = ηij

I scalar field depends only on the radial coord. η

The leading order of scalar field is given by

φ ∼ e−(d−∆±)ηφ±

where

I φ+ : leading order term of the non-normalizable mode

I φ− : leading order term of the normalizable mode

I ∆± = d
2
±
√

d2

4
+m2

The mass of the scalar field has the Breitenlohner-Freedman(BF) bound:

m2 = m2
BF = − d

2

4
.
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The radial expansion

Class I : BF-bound saturated (m2 = m2
BF = − d

2

4
)

The radial expansion of the scalar field

φ = e−
d
2
η
(
φ(0) + · · ·

)
Linearized analysis : to see the back reaction of the metric to the scalar field.

V (φ) =
1

2
m2φ2 + · · ·

The linearized EOM of our specific model become

h′′ij + (d− 4)h′ij + (4− 2d)hij − e2ηηij
(
h′′ + dh′

)
= 0 ,

(d− 1)h′ − d2

4
e−dηφ2

(0) = 0 , h ≡ e−2ηηijhij

ϕ′′ + dϕ′ −m2ϕ = 0 ,

where primes denote derivatives with respect to η and γij ≡ e2ηηij + hij and

φ ≡ e−
d
2
ηφ(0) + ϕ .

Since the leading order contribution of the scalar field to the metric starts from
the order e−dη, the linear analysis is sufficient to compute conserved charges.
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The radial expansion

the leading order coefficient γ
(d)
ij in metric satisfies the trace relation,

ηijγ
(d)
ij = − d

4(d− 1)
φ2

(0) .

The form of the coefficients γ
(d)
ij would be further specified by the metric

ansatz of the solution. As in the case of pure Einstein gravity, these coefficients
can be used to determine the conserved charges.
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The radial expansion

Class II : BF-bounded m2 > m2
BF = − d

2

4

The radial expansion of the scalar field (∆φ = ∆+)

φ = e−(d−∆φ)η
(
φ(0) + e−2(d−∆φ)ηφ(2) + e−4(d−∆φ)ηφ(4) + · · ·

)
for the even scalar potential

V (φ) =
1

2
m2φ2 +

1

4
λφ4 + · · ·

We restrict to the case ∆φ < d so that this non-normalizable mode does not
change the asymptotic AdS structure.

The radial expansion of the metric solution

γij = e2η
[
ηij + e−2(d−∆φ) ηγ

(2d−2∆φ)

ij + · · ·+ e−dηγ
(d)
ij + · · ·

]
where the leading order term in the expansion is

γ
(2d−2∆φ)

ij = −
φ2

(0)

4(d− 1)
ηij .
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3D Black hole solutions: Class I

I Consider the three-dimensional AdS black hole space with scalar hair.

Class I : m2 = m2
BF = −1

The most general solution obtained by solving the linearized EOM

γ
(2)
ij =

(
C1 + 1

4
φ2

(0) −C2

−C2 C1 − 1
4
φ2

(0)

)
where C1 and C2 are arbitrary parameters which turn out to be proportional to
the mass and the angular momentum, respectively, of AdS black holes with
scalar hair.
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3D Black hole solutions: Class I

1. Mass : MADT ≡Mg
ADT +Mφ

ADT = 1
4G

(
C1 − 1

4
φ2

(0)

)
+ 1

16G
φ2

(0) = 1
4G
C1

Computed by the ADT potential for the time-like Killing vector ξiT = (1, 0)

√
−g QηiADT (ξT ; δg)

∣∣
η→∞ =

(
δC1 −

1

2
φ(0)δφ(0) , δC2

)
√
−g QηiADT (ξT ; δφ)

∣∣
η→∞ =

( 1

2
φ(0) δφ(0) , 0

)
2. Angular momentum : JADT ≡ JgADT + JφADT = 1

4G
C2

Computed by the ADT potential for the rotational Killing vector
ξiR = (0, 1)

√
−gQηiADT (ξR ; δg)

∣∣
η→∞ =

(
− δC2 , −δC1 −

1

2
φ(0)δφ(0)

)
√
−gQηiADT (ξR ; δg)

∣∣
η→∞ =

(
0 , 0

)
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3D Black hole solutions: Class I

In this class, the boundary stress tensor is

(Tg)
i
j =

(
−C1 + 1

4
φ2

(0) −C2

−C2 C1 + 1
4
φ2

(0)

)
(Tφ)i j =

(
− 1

4
φ2

(0) 0
0 − 1

4
φ2

(0)

)

I It is straightforward to confirm the equivalence of the bulk and boundary
conserved charges for Killing vectors ξT and ξR.

I The equivalence relation holds for the metric and matter part separately.
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3D Black hole solutions: Class I

Some known black hole solutions belong to this class

I BTZ black hole solutions [’92 Banados, Teitelboim, Zanelli]

ds2 =− (r2 − r2
−)(r2 − r2

+)

r2
dt2 +

r2

(r2 − r2
−)(r2 − r2

+)
dr2 + r2

(
dθ − r−r+

r2
dt
)2

These are solutions in pure gravity with a cosmological constant or
solutions without scalar hair, φ(0) = 0. After transforming to FG
coordinates,

C1 =
r2
− + r2

+

2
, C2 = r−r+ ,

which reproduce the well-known expressions of the total mass and angular
momentum of BTZ black holes

M =
r2
− + r2

+

8G
, J =

r−r+

4G
.
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3D Black hole solutions: Class I

I The extremal rotating black holes with scalar hair [’12 Hyun, Jeong, Yi]

ds2 = r2

[
−1 +

µ0

r2
+O

( 1

r3

)]
dt2 +

1

r2

[
1 +

µ0 − 1
2
φ2

(0)

r2
+O

( 1

r3

)]
dr2

+ r2

[
dθ −

( µ0

2r2
+O

( 1

r3

))
dt

]2

φ(r) =
φ(0)

r
+O

( 1

r2

)
,

These are solutions corresponding to the case C1 = C2 = µ0
2

.

The total mass and angular momentum of these black holes are

M = J =
µ0

8G
,

which satisfy the extremality condition.
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3D Black hole solutions: Class II

Class II : −1 < m2 < 0

In this class, we apply our formalism to those solutions given in [’06 Henneaux,
Martinez, Troncoso, Zanelli]

The scalar potential with a cosmological constant

V (φ)− 2 = −2
[

cosh6(
φ

4
) + ν sinh6(

φ

4
)
]

The radial expansion of the scalar field in FG coordinates

φ = e−
1
2
η
(
φ(0) +

1

48
φ3

(0)e
−η + · · ·

)
The radial expansion of the metric solution up to the e−2η order

γ
(1)
ij = −1

4
φ2

(0) ηij , γ
(2)
ij =

3

128
φ4

(0)

[
ηij +

(1 + ν)

4
δij

]
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3D Black hole solutions: Class II

1. Mass : MADT ≡Mg
ADT +Mφ

ADT = 1
4G

3(1+ν)
512

φ4
(0)

The ADT potentials for the time-like Killing vector ξiT

√
−g QηiADT (ξT ; δg)

∣∣
η→∞ =

[
− 1

4
eηφ(0)δφ(0) +

1

32
φ3

(0)δφ(0)

+
3(1 + ν)

128
φ3

(0)δφ(0)

]
ξiT

√
−g QηiADT (ξT ; δφ)

∣∣
η→∞ =

[ 1

4
eηφ(0)δφ(0) −

1

32
φ3

(0)δφ(0)

]
ξiT

2. Angular momentum : JADT ≡ JgADT + JφADT = 0

The ADT potentials for the rotational Killing vector ξiR

√
−g QηiADT (ξR ; δg)

∣∣
η→∞ =

[
− 1

4
eηφ(0)δφ(0) +

1

32
φ3

(0)δφ(0)

− 3(1 + ν)

128
φ3

(0)δφ(0)

]
ξiR

√
−g QηiADT (ξR ; δφ)

∣∣
η→∞ =

[ 1

4
eηφ(0)δφ(0) −

1

32
φ3

(0)δφ(0)

]
ξiR

Holographic conserved charges of rotating black holes Aristotle University of Thessaloniki



Outline Motivations Backgrounds Constructions Applications 1 Application 2 Conclusion

3D Black hole solutions: Class II

Now, we turn to the boundary formalism. In this case, we choose counter
terms of the scalar field as

Φct = −1

4
φ2 − 1

96
φ4

By using this form of counter terms, one can see that

√
−γ (TG)i j =

[
1

8
eηφ2

(0) −
3

128
φ4

(0) +
3(1 + ν)

512
φ4

(0)

]
δij −

3(1 + ν)

256
φ4

(0)δ
itδjt

√
−γ (Tφ)i j =−

[
1

8
eηφ2

(0) −
3

128
φ4

(0)

]
δij

√
−γΠφ = 0

Once again, it is straightforward to confirm the equivalence relation for Killing
vectors ξT and ξR. As a result, the identical expression for the mass and
angular momentum can be obtained through the boundary stress tensor
method as well.
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5 dim. AdS Kerr black hole

I B.H. mass (6.49), (6.50) in [hep-th/0505190]

M = MCasimir +
2π2m(2Ξa + 2Ξb − ΞaΞb)

κ2Ξ2
aΞ2

b

, MCasimir ≡
3π2l2

4κ2

(
1 +

(Ξa − Ξb)
2

9ΞaΞb

)
: Casimir energy depends on the rotation parameters of the AdS Kerr
black hole.

I B.H. mass (14) in [hep-th/0507034]

Etot =
3π2l2

4κ2
+

2π2m(2Ξa + 2Ξb − ΞaΞb)

κ2Ξ2
aΞ2

b

: Casimir energies that are necessarily independent of the black hole rotation
parameters.

⇒ We would like to compensate this with modification of the holographic
charges.
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Backgrounds: bulk ADT charges

Off-shell ADT bulk current

√
−gJ µADT = δ

(√
−gEµνξν

)
−
√
−gEµν δξν +

1

2

√
−g ξµEΨδΨ

I Identically conserved : ∂µ(
√
−gJ µADT ) = 0

I ADT potential : J µADT = ∇νQµνADT
I ADT potential in terms of Noether potential

2
√
−gQµνADT (ξ, δΨ ; Ψ) = δKµν(ξ ; Ψ)−Kµν(δξ ; Ψ)− 2ξ[µΘν](δΨ ; Ψ)

Quasi-local conserved charges

Q(ξ) =
1

8πG

∫ 1

0

ds

∫
B
dD−2dxµν

√
−gQµνADT (g; ξ|s)

⇒ with same procedure, identically conserved current at boundary.
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Construction: modified holographic charges

Construct the boundary conserved current

√
−γJ iB(ξB) ≡− δ

(√
−γTij

Bξ
B
j

)
+
√
−γTB j

i δξjB +
1

2

√
−γ ξiB

(
T klB δγkl + Πψδψ

)

1.
√
−γTij

Bξ
B
j : the conserved currents in conventional holographic charges

2. Identically conserved : ∂i
(√
−γJ iB

)
= 0

3. Equivalent with bulk expression.

√
−gQηiADT |η→∞ =

√
−γJ iB .

Modified holographic conserved charges

QB(ξB) =
1

8πG

∫
∂B
dd−1xi

∫
ds
√
−γ J iB(ξB)
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Example: 5 dim. AdS Kerr B.H.

AdS Kerr black hole solutions in Boyer-Lindquist coordinates

ds2 = − ∆r

ρ2

(
dt− a∆φdφ− b∆ψdψ

)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2

+
∆θ sin2 θ

ρ2

(
adt− r2 + a2

1− a2
dφ
)2

+
∆θ cos2 θ

ρ2

(
bdt− r2 + b2

1− b2 dψ
)2

+
1 + 1/r2

ρ2

(
abdt− b(r2 + a2)∆φdφ− a(r2 + b2)∆ψdψ

)2

,

where ρ2 ≡ r2 + a2 cos2 θ + b2 sin2 θ,

∆r ≡ (r2 + a2)(r2 + b2)
(

1 +
1

r2

)
− 2m,

∆θ ≡ 1− a2 cos2 θ − b2 sin2 θ , ∆φ ≡
sin2 θ

1− a2
, ∆ψ ≡

cos2 θ

1− b2 .
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Example: 5 dim. AdS Kerr B.H.

∫
d3xi
√
−γ
[
Ti
B jδξ

j
T+

1

2
ξiT
(
T klB δγkl + Πψδψ

)]
= −π

2(a2 − b2)(2− a2 − b2)

6(1− a2)(1− b2)

[
aδa

1− a2
− bδb

1− b2

]
,

In Fefferman-Graham coordinates,

ds2 = dη2 + γijdx
idxj , γij =

∑
n=0

e−2(n−1)ηγ
(n)
ij ,

with time-like Killing vector ξiT ∂i = ∂t − a∂φ − b∂ψ, the finite mass expression
is given by

δQB(ξT ) = δ

(
πm(3− a2 − b2 − a2b2)

4G(1− a2)2(1− b2)2

)
= δ

(
2π2m(2Ξa + 2Ξb − ΞaΞb)

κ2Ξ2
aΞ2

b

)
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Example: 5 dim. AdS Kerr B.H.

In asymptotically canonical AdS coordinates,

ds2 =− (1 + y2)dt2 +
dy2

1 + y2 − 2m
∆2
θ̂
y2

+ y2dΩ̂2
3

+
2m

∆3
θ̂
y2

(dt− a sin2 θ̂dφ̂− b cos2 θ̂dψ̂)2 + · · · ,

where

∆θ̂ ≡ 1− a2 sin2 θ̂ − b2 cos2 θ̂ ,

dΩ̂2
3 ≡ dθ̂2 + sin2 θ̂dφ̂+ cos2 θ̂dψ̂ .

one can check explicitly that mass and angular momentums in these
non-rotating coordinates are given by the same expressions as in the rotating
ones. ⇒ frame independence confirmed!
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Conclusion

I We have constructed a quasi-local formalism for conserved charges in a
general theory of gravity with diffeomorphism symmetry in the presence of
arbitrary matter fields.

I As an application of our formalism, we have considered some examples in
order to show some details in our formalism concretely.

I We propose the modified form of the conventional holographic conserved
charges which provides us the frame-independent expressions for charges.

I As an explicit example, we consider 5-dimensional AdS Kerr black holes
and show that our form of holographic conserved charges gives us the
identical expressions in the rotating and non-rotating frames.

M = Mcasimir(m = a = b = 0) +
πm(3− a2 − b2 − a2b2)

4G(1− a2)2(1− b2)2
,
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