Steady states in conformal field theories

Based on work with A. Karch, H-C. Chang and I.Amado.

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths:

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths:

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths:

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths:

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths:

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths:

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths:

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths.

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths.

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths.

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths, which are infinitely far apart.

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths, which are infinitely far apart.

What can we say about the final state at late times?

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths, which are infinitely far apart.

What can we say about the final state at late times?

$P(T)$	
0	

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:
(I) $\frac{P}{P_{0}}=\frac{1}{d}\left(2(d-1)-(d-2) \sqrt{1-\delta p^{2}}\right)$

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:

$$
\begin{aligned}
& \text { (I) } \frac{P}{P_{0}}=\frac{1}{d}\left(2(d-1)-(d-2) \sqrt{1-\delta p^{2}}\right) \\
& P_{0}=\frac{P_{L}+P_{R}}{2}
\end{aligned}
$$

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:
(I) $\frac{P}{P_{0}}=\frac{1}{d}\left(2(d-1)-(d-2) \sqrt{1-\delta p^{2}}\right)$
$P_{0}=\frac{P_{L}+P_{R}}{2}$

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:

$$
\begin{aligned}
& \text { (l) } \frac{P}{P_{0}}=\frac{1}{d}\left(2(d-1)-(d-2) \sqrt{1-\delta p^{2}}\right) \\
& P_{0}=\frac{P_{L}+P_{R}}{2}
\end{aligned} \quad \delta p=\frac{P_{L}-P_{R}}{P_{L}+P_{R}} \quad, ~ l
$$

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:
(I) $\frac{P}{P_{0}}=\frac{1}{d}\left(2(d-1)-(d-2) \sqrt{1-\delta p^{2}}\right)$
$P_{0}=\frac{P_{L}+P_{R}}{2} \quad 0<\delta p=\frac{P_{L}-P_{R}}{P_{L}+P_{R}}<1$

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:
(I) $\frac{P}{P_{0}}=\frac{1}{d}\left(2(d-1)-(d-2) \sqrt{1-\delta p^{2}}\right)$
$P_{0}=\frac{P_{L}+P_{R}}{2}$
$0<\delta p=\frac{P_{L}-P_{R}}{P_{L}+P_{R}}<1 \quad d=$ dimension of spacetime

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:

$$
P_{0}=\frac{P_{L}+P_{R}}{2} \quad \delta p=\frac{P_{L}-P_{R}}{P_{L}+P_{R}} \quad d=\text { dimension of spacetime }
$$

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:

$$
\begin{aligned}
& P_{0}=\frac{P_{L}+P_{R}}{2} \\
& \delta p=\frac{P_{L}-P_{R}}{P_{L}+P_{R}} \\
& d=\text { dimension of spacetime }
\end{aligned}
$$

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:

Conjecture: If the field theory thermalizes quickly then the late time steady state is universal.

The pressure at late times will take one of 2 values:

Plan:

- Prove the conjecture for 2d CFT's
- Prove the conjecture in idealized case
- Motivate the conjecture
-Provide evidence for the conjecture in non trivial configurations

Steady states in 2d CFT's

Steady states in 2d CFT's

Setting up the problem: at $\mathrm{t}=0$ we have

Steady states in 2d CFT's

Setting up the problem: at $\mathrm{t}=0$ we have

Steady states in 2d CFT's

Setting up the problem: at $\mathrm{t}=0$ we have

Steady states in 2d CFT's

Setting up the problem: at $\mathrm{t}=0$ we have

Steady states in 2d CFT's

Setting up the problem: at $\mathrm{t}=0$ we have

We fix $T^{\prime \prime}(t, x=0)=P_{\text {left }}$ and $T^{\prime \prime}(t, x=L)=P_{\text {right }}$.

Steady states in 2d CFT's

Setting up the problem: at $\mathrm{t}=0$ we have

We fix $T^{I I}(t, x=0)=P_{\text {left }}$ and $T^{I I}(t, x=L)=P_{\text {right }}$.

Steady states in 2d CFT's

Setting up the problem: at $\mathrm{t}=0$ we have

We fix $T^{I I}(t, x=0)=P_{\text {left }}$ and $T^{I I}(t, x=L)=P_{\text {right }}$.

Steady states in 2d CFT's

Setting up the problem: at $\mathrm{t}=0$ we have

We fix $T^{I I}(t, x=0)=P_{\text {left }}$ and $T^{I I}(t, x=L)=P_{\text {right }}$.

Steady states in 2d CFT's

Setting up the problem: at $\mathrm{t}=0$ we have

We fix $T^{I I}(t, x=0)=P_{\text {left }}$ and $T^{I I}(t, x=L)=P_{\text {right }}$.

Steady states in 2d CFT's

Steady states in 2d CFT's

Given:

What are T^{11} and T^{01} for all t and x ?

Steady states in 2d CFT's

Given:

What are T^{11} and T^{01} for all t and x ?

Steady states in 2d CFT's

For a conformal theory (using $d s^{2}=d z d \bar{z}$)

$$
T^{z z}=T(z) \quad T^{\bar{z} \bar{z}}=\bar{T}(\bar{z}) \quad T^{\bar{z} z}=0
$$

Steady states in 2d CFT's

For a conformal theory (using $d s^{2}=d z d \bar{z}$)

$$
T^{z z}=T(z) \quad T^{\bar{z} \bar{z}}=\bar{T}(\bar{z}) \quad T^{\bar{z} z}=0
$$

In the $d s^{2}=-d t^{2}+d x^{2}$ coordinate system

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

Steady states in 2d CFT's

In the $d s^{2}=-d t^{2}+d x^{2}$ coordinate system

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

Steady states in 2d CFT's

In the $d s^{2}=-d t^{2}+d x^{2}$ coordinate system

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

Steady states in 2d CFT's

In the $d s^{2}=-d t^{2}+d x^{2}$ coordinate system

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

At $x=\infty$ we have the right heat bath

$$
T_{+}(\infty)+T_{-}(\infty)=P_{\text {right }}, \quad T_{-}(\infty)-T_{+}(\infty)=0
$$

Steady states in 2d CFT's

In the $d s^{2}=-d t^{2}+d x^{2}$ coordinate system

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

At $x=\infty$ we have the right heat bath

$$
T_{+}(\infty)+T_{-}(\infty)=P_{\text {right }}, \quad T_{-}(\infty)-T_{+}(\infty)=0
$$

At $x=-\infty$ we have the left heat bath

$$
T_{+}(-\infty)+T_{-}(-\infty)=P_{\text {left }}, \quad T_{-}(-\infty)-T_{+}(-\infty)=0
$$

Steady states in 2d CFT's

In the $d s^{2}=-d t^{2}+d x^{2}$ coordinate system

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

At $x=\infty$ we have the right heat bath

$$
T_{+}(\infty)+T_{-}(\infty)=P_{\text {right }}, \quad T_{-}(\infty)-T_{+}(\infty)=0
$$

At $x=-\infty$ we have the left heat bath

$$
T_{+}(-\infty)+T_{-}(-\infty)=P_{\text {left }}, \quad T_{-}(-\infty)-T_{+}(-\infty)=0
$$

Therefore, at $\mathrm{t}=\infty$ we have

$$
\begin{aligned}
& T^{11}=T_{+}(\infty)+T_{-}(-\infty)=\frac{1}{2}\left(P_{\text {left }}+P_{\text {right }}\right), \\
& T^{01}=T_{-}(-\infty)-T_{+}(\infty)=\frac{1}{2}\left(P_{\text {left }}-P_{\text {right }}\right)
\end{aligned}
$$

Steady states in 2d CFT's

In the $d s^{2}=-d t^{2}+d x^{2}$ coordinate system

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

At $x=\infty$ we have the right heat bath

$$
T_{+}(\infty)+T_{-}(\infty)=P_{\text {right }}, \quad T_{-}(\infty)-T_{+}(\infty)=0
$$

At $x=-\infty$ we have the left heat bath

$$
T_{+}(-\infty)+T_{-}(-\infty)=P_{\text {left }}, \quad T_{-}(-\infty)-T_{+}(-\infty)=0
$$

Therefore, at $\mathrm{t}=\boldsymbol{\infty}$ we have (See also, Berrard and Doyon, 2013 ; Bhaseen et. al, 2013)

$$
\begin{aligned}
& T^{11}=T_{+}(\infty)+T_{-}(-\infty)=\frac{1}{2}\left(P_{\text {left }}+P_{\text {right }}\right), \\
& T^{01}=T_{-}(-\infty)-T_{+}(\infty)=\frac{1}{2}\left(P_{\text {left }}-P_{\text {right }}\right)
\end{aligned}
$$

Steady states in 2d CFT's

The exact same analysis can be used to consider more complicated configurations:

Steady states in 2d CFT's

The exact same analysis can be used to consider more complicated configurations:
$\frac{\beta,}{\text { 品 }}$

Steady states in 2d CFT's

The exact same analysis can be used to consider more complicated configurations:
$\xrightarrow[{(-\sqrt{-}}]{\substack{-2}}$

Steady states in 2d CFT's

The exact same analysis can be used to consider more complicated configurations:
$\frac{\beta}{8}$

Steady states in 2d CFT's

The exact same analysis can be used to consider more complicated configurations:

Steady states in 2d CFT's

The exact same analysis can be used to consider more complicated configurations:
$\xrightarrow[\substack{\text { a/ } \\ \text { 局 }}]{\beta_{R}}$

$$
T^{01}(t \rightarrow \infty)=\frac{\pi}{12}\left(c_{-} T_{L}^{2}-c_{+} T_{R}^{2} \frac{1-\beta_{R}}{1+\beta_{R}}\right)+\frac{1}{2 \pi}\left(k_{-} \mu_{L}^{-}-k_{+} \mu_{R}^{+} \frac{1-\beta_{R}}{1+\beta_{R}}\right)
$$

Steady states in 2d CFT's

The exact same analysis can be used to consider more complicated configurations:
$\xrightarrow[\substack{\text { 局 }}]{\stackrel{\beta_{R}}{\longrightarrow}}$
$T^{01}(t \rightarrow \infty)=\frac{\pi}{12}\left(c_{-} T_{L}^{2}-c_{+} T_{R}^{2} \frac{1-\beta_{R}}{1+\beta_{R}}\right)+\frac{1}{2 \pi}\left(k_{-} \mu_{L}^{-}-k_{+} \mu_{R}^{+} \frac{1-\beta_{R}}{1+\beta_{R}}\right)$
(Note that: $\left.T^{01}(t \rightarrow \infty)=\frac{\pi}{12}\left(c_{-} T_{L}^{2}-c_{+} T_{R}^{2}\right)\right)$

Steady states in 2d CFT's

Main ingredient:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

Steady states in 2d CFT's

Main ingredient:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

It follows from:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Generalizing to higher dimensions

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Generalizing to higher dimensions

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Generalizing to higher dimensions

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Generalizing to higher dimensions

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

So for $d>2$ we have 4 components of the stress tensor but only three non trivial equations.

Generalizing to higher dimensions

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

So for $\mathrm{d}>2$ we have 4 components of the stress tensor but only three non trivial equations.

We need more input.

Higher dimensions: an idealized case

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Higher dimensions: an idealized case

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

Higher dimensions: an idealized case

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

energy density

Higher dimensions: an idealized case

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

Higher dimensions: an idealized case

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

Higher dimensions: an idealized case
Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

Higher dimensions: an idealized case

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

If the pressure difference between the baths is small, then sound modes will dominate the dynamics

Higher dimensions: an idealized case

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

If the pressure difference between the baths is small, then sound modes will dominate the dynamics

$$
\epsilon=(d-1) P, \quad P=P_{0}+\delta P(t, x), \quad u^{\mu}=(1, \delta \beta(t, x), 0, \ldots, 0)
$$

Higher dimensions: an idealized case

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

If the pressure difference between the baths is small, then sound modes will dominate the dynamics

$$
\begin{aligned}
& \epsilon=(d-1) P, \quad P=P_{0}+\delta P(t, x), \quad u^{\mu}=(1, \delta \beta(t, x), 0, \ldots, 0) \\
& \quad \delta P=P_{-}\left(x-c_{s} t\right)+P_{+}\left(x+c_{s} t\right) \\
& \delta \beta(t, x)=\beta_{0}+\frac{1}{d P_{0} c_{s}}\left(P_{+}\left(x+c_{s} t\right)-P_{-}\left(x-c_{s} t\right)\right),
\end{aligned}
$$

Higher dimensions: an idealized case

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

$$
T^{\mu \nu}=\epsilon(P) u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P
$$

If the pressure difference between the baths is small, then sound modes will dominate the dynamics

$$
\begin{gathered}
\epsilon=(d-1) P, \quad P=P_{0}+\delta P(t, x), \quad u^{\mu}=(1, \delta \beta(t, x), 0, \ldots, 0) \\
\delta P=P_{-}\left(x-c_{s} t\right)+P_{+}\left(x+c_{s} t\right) \text { speed of sound } \\
\delta \beta(t, x)=\beta_{0}+\frac{1}{d P_{0} c_{s}}\left(P_{+}\left(x+c_{s} t\right)-P_{-}\left(x-c_{s} t\right)\right),
\end{gathered}
$$

Higher dimensions: an idealized case

$$
\begin{aligned}
\delta P & =P_{-}\left(x-c_{s} t\right)+P_{+}\left(x+c_{s} t\right) \\
\delta \beta(t, x) & =\beta_{0}+\frac{1}{d P_{0} c_{s}}\left(P_{+}\left(x+c_{s} t\right)-P_{-}\left(x-c_{s} t\right)\right),
\end{aligned}
$$

Higher dimensions: an idealized case

The linearized equations for $\delta \mathrm{P}$ and $\delta \beta$ are wave equations. Their general solution is given by:

$$
\begin{aligned}
\delta P & =P_{-}\left(x-c_{s} t\right)+P_{+}\left(x+c_{s} t\right) \\
\delta \beta(t, x) & =\beta_{0}+\frac{1}{d P_{0} c_{s}}\left(P_{+}\left(x+c_{s} t\right)-P_{-}\left(x-c_{s} t\right)\right)
\end{aligned}
$$

Higher dimensions: an idealized case

The linearized equations for $\delta \mathrm{P}$ and $\delta \beta$ are wave equations. Their general solution is given by:

$$
\begin{aligned}
\delta P & =P_{-}\left(x-c_{s} t\right)+P_{+}\left(x+c_{s} t\right) \\
\delta \beta(t, x) & =\beta_{0}+\frac{1}{d P_{0} c_{s}}\left(P_{+}\left(x+c_{s} t\right)-P_{-}\left(x-c_{s} t\right)\right),
\end{aligned}
$$

So we can use the same strategy as before to obtain the late time behavior of the pressure and velocity.

Higher dimensions: an idealized case

The linearized equations for $\delta \mathrm{P}$ and $\delta \beta$ are wave equations. Their general solution is given by:

$$
\begin{aligned}
\delta P & =P_{-}\left(x-c_{s} t\right)+P_{+}\left(x+c_{s} t\right) \\
\delta \beta(t, x) & =\beta_{0}+\frac{1}{d P_{0} c_{s}}\left(P_{+}\left(x+c_{s} t\right)-P_{-}\left(x-c_{s} t\right)\right),
\end{aligned}
$$

So we can use the same strategy as before to obtain the late time behavior of the pressure and velocity:
At $x \rightarrow \mp \infty$ we impose that the system is connected to a heat bath. This determines the $t \rightarrow \infty$ behavior

$$
T^{00}(t \rightarrow \infty)=(d-1) P_{0}, \quad T^{01}(t \rightarrow \infty)=\frac{\Delta P}{c_{s}}, \quad T^{11}(t \rightarrow \infty)=P_{0}
$$

What did we learn?

What did we learn?

At late times sound modes propogating towards the heat bath generated an intermediate steady state region.

What did we learn?

At late times sound modes propogating towards the heat bath generated an intermediate steady state region.

We conjecture that this is always the case:

What did we learn?

At late times sound modes propogating towards the heat bath generated an intermediate steady state region.

We conjecture that this is always the case:

What did we learn?

At late times sound modes propogating towards the heat bath generated an intermediate steady state region.

We conjecture that this is always the case:

What did we learn?

At late times sound modes propogating towards the heat bath generated an intermediate steady state region.

We conjecture that this is always the case:

What did we learn?

We conjecture that this is always the case:

Higher dimensions: the general case

We conjecture that:

Higher dimensions: the general case

We conjecture that:

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Higher dimensions: the general case

We conjecture that:

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}(x)=\left(\begin{array}{cc}
\epsilon(x) & J(x) \\
J(x) & P(x)
\end{array}\right)
$$

Higher dimensions: the general case

We conjecture that:

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}(x)=\left(\begin{array}{ll}
\epsilon(x) & J(x) \\
J(x) & P(x)
\end{array}\right)
$$

Conservation:

$$
J^{\prime}(x)=0, \quad P^{\prime}(x)=0
$$

Higher dimensions: the general case

We conjecture that:

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}(x)=\left(\begin{array}{ll}
\epsilon(x) & J(x) \\
J(x) & P(x)
\end{array}\right)
$$

Conservation:

$$
J^{\prime}(x)=0, \quad P^{\prime}(x)=0
$$

Higher dimensions: the general case

We conjecture that:

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Conservation:

$$
J^{\prime}(x)=0, \quad P^{\prime}(x)=0
$$

Higher dimensions: the general case

We conjecture that:

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Region 3

$$
T_{3}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{R}} W_{R}\left(x-v_{R} t\right) & W_{R}\left(x-v_{R} t\right) \\
W_{R}\left(x-v_{R} t\right) & -v_{R} W_{L}\left(x-v_{R} t\right)
\end{array}\right)+C_{I I I}^{\mu \nu}
$$

Higher dimensions: the general case

We conjecture that:
$T^{11}=P_{0}+\Delta P$

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Region 3

$$
T_{3}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{R}} W_{R}\left(x-v_{R} t\right) & W_{R}\left(x-v_{R} t\right) \\
W_{R}\left(x-v_{R} t\right) & -v_{R} W_{L}\left(x-v_{R} t\right)
\end{array}\right)+C_{I I I}^{\mu \nu}
$$

Higher dimensions: the general case

We conjecture that:

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Region 3

$$
T_{3}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{R}} W_{R}\left(x-v_{R} t\right) & W_{R}\left(x-v_{R} t\right) \\
W_{R}\left(x-v_{R} t\right) & -v_{R} W_{L}\left(x-v_{R} t\right)
\end{array}\right)+C_{I I I}^{\mu \nu}
$$

Higher dimensions: the general case

We conjecture that:

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Region 3

$$
T_{3}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{R}} W_{R}\left(x-v_{R} t\right) & W_{R}\left(x-v_{R} t\right) \\
W_{R}\left(x-v_{R} t\right) & -v_{R} W_{L}\left(x-v_{R} t\right)
\end{array}\right)+C_{I I I}^{\mu \nu}
$$

Higher dimensions: the general case

We conjecture that:

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Region 3

$$
T_{3}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{R}} W_{R}\left(x-v_{R} t\right) & W_{R}\left(x-v_{R} t\right) \\
W_{R}\left(x-v_{R} t\right) & -v_{R} W_{L}\left(x-v_{R} t\right)
\end{array}\right)+C_{I I I}^{\mu \nu}
$$

Higher dimensions: the general case

We conjecture that:

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Region 3

$$
T_{3}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{R}} W_{R}\left(x-v_{R} t\right) & W_{R}\left(x-v_{R} t\right) \\
W_{R}\left(x-v_{R} t\right) & -v_{R} W_{L}\left(x-v_{R} t\right)
\end{array}\right)+C_{I I I}^{\mu \nu}
$$

Higher dimensions: the general case

We conjecture that:

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Region 3

$$
T_{3}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{R}} W_{R}\left(x-v_{R} t\right) & W_{R}\left(x-v_{R} t\right) \\
W_{R}\left(x-v_{R} t\right) & -v_{R} W_{L}\left(x-v_{R} t\right)
\end{array}\right)+C_{I I I}^{\mu \nu}
$$

Higher dimensions: the general case

We conjecture that:

$$
T^{11}=-v_{L} J+\left(P_{0}+\Delta P\right)=v_{R} J+\left(P_{0}-\Delta P\right)
$$

$T^{\mu \nu}=(d-1) P u^{\mu} u^{\nu}+\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) P$

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Region 3

$$
T_{3}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{R}} W_{R}\left(x-v_{R} t\right) & W_{R}\left(x-v_{R} t\right) \\
W_{R}\left(x-v_{R} t\right) & -v_{R} W_{L}\left(x-v_{R} t\right)
\end{array}\right)+C_{I I I}^{\mu \nu}
$$

$$
\begin{aligned}
& T^{11}=P_{0}+\Delta P \\
& T^{10}=0 \\
& \text { Region I }
\end{aligned}
$$

Higher dimensions: the general case

We conjecture that:

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Region 3

$$
T_{3}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{R}} W_{R}\left(x-v_{R} t\right) & W_{R}\left(x-v_{R} t\right) \\
W_{R}\left(x-v_{R} t\right) & -v_{R} W_{L}\left(x-v_{R} t\right)
\end{array}\right)+C_{I I I}^{\mu \nu}
$$

Higher dimensions: the general case

 We conjecture that:

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

Higher dimensions: the general case

We conjecture that:

We find:

Higher dimensions: the general case

We conjecture that:

We find:

Higher dimensions: the general case

We conjecture that:

We find:

Higher dimensions: the general case

We conjecture that:

We find:

Higher dimensions: the general case

We conjecture that:

We find:

Higher dimensions: the general case

 We conjecture that:

We find:

(See also Bhaseen et. al., 2013)

Higher dimensions: the general case

 We conjecture that:

We find:

Higher dimensions: the general case

 We conjecture that:

We find:

Higher dimensions: the general case

 We conjecture that:

We find:

Higher dimensions: the general case

We find:

Higher dimensions: the general case

We find:

Test I: nonlinear viscous hydrodynamics

Higher dimensions: viscous hydro

Higher dimensions: viscous hydro

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.8$)

Higher dimensions: viscous hydro
We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.8$)

Higher dimensions: viscous hydro

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.8$)

Higher dimensions: viscous hydro

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.8$)

Higher dimensions: the general case

We find:

Test I: nonlinear viscous hydrodynamics.
Test 2: Holography.

Holography

Let us start by considering an equilibrated configuration

Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

$$
d s^{2}=2 d t(d r-A(r) d t)+r^{2} d \vec{x}^{2}
$$

Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r) d t)+r^{2} d \vec{x}^{2} \\
& A(r)=r^{2}\left(1-\left(\frac{4 \pi T}{3 r}\right)^{3}\right)
\end{aligned}
$$

Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

$$
P(T)=p_{0}\left(\frac{4 \pi T}{3}\right)^{3}
$$

$$
d s^{2}=2 d t(d r-A(r) d t)+r^{2} d \vec{x}^{2}
$$

$$
A(r)=r^{2}\left(1-\left(\frac{4 \pi T}{3 r}\right)^{3}\right)
$$

Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

$$
P(T)=p_{0}\left(\frac{4 \pi T}{3}\right)^{3}
$$

e.g., in ABJM

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r) d t)+r^{2} d \vec{x}^{2} \\
& A(r)=r^{2}\left(1-\left(\frac{4 \pi T}{3 r}\right)^{3}\right)
\end{aligned}
$$

$$
p_{0}=\frac{2 N^{2}}{9 \sqrt{2 \lambda}} \quad \lambda=\frac{N}{k}
$$

Holography

Out of equilibrium we want to start with:

Holography

Out of equilibrium we want to start with:

Holography

Out of equilibrium we want to start with:

$$
\xrightarrow{P\left(T_{L}\right)=p_{0}\left(\frac{4 \pi T_{L}}{3}\right)^{3}}
$$

A planar event horizon:

Holography

Out of equilibrium we want to start with:

$$
P\left(T_{L}\right)=p_{0}\left(\frac{4 \pi T_{L}}{3}\right)^{3}
$$

$$
P\left(T_{R}\right)=p_{0}\left(\frac{4 \pi T_{R}}{3}\right)^{3}
$$

A planar event horizon:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

Holography

Out of equilibrium we want to start with:

$P\left(T_{L}\right)=p_{0}\left(\frac{4 \pi T_{L}}{3}\right)^{3}$

$$
P\left(T_{R}\right)=p_{0}\left(\frac{4 \pi T_{R}}{3}\right)^{3}
$$

A planar event horizon:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right) \\
& a_{1}=-A_{0}\left(1-\alpha \tanh \left(\beta \tanh \left(\frac{z}{\lambda}\right)\right)\right) \\
& a_{1}(-\infty)=\frac{4 \pi T_{L}}{3} \quad a_{1}(\infty)=\frac{4 \pi T_{R}}{3}
\end{aligned}
$$

Holography

Out of equilibrium we want to start with:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

Holography

Out of equilibrium we want to start with:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

and evolve it forward in time

Holography

Out of equilibrium we want to start with:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

and evolve it forward in time. Using
$d s^{2}=2 d t(d r-A(t, z, r) d t-F(t, z, r) d z)+\Sigma^{2}(t, r, z)\left(e^{B(t, z, r)} d x_{\perp}^{2}+e^{-B(t, z, r)} d z^{2}\right)$
the Einstein equations reduce to a set of nested linear differential equations in the radial coordinate ' r '.

Holography

Out of equilibrium we want to start with:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

and evolve it forward in time. Using
$d s^{2}=2 d t(d r-A(t, z, r) d t-F(t, z, r) d z)+\Sigma^{2}(t, r, z)\left(e^{B(t, z, r)} d x_{\perp}^{2}+e^{-B(t, z, r)} d z^{2}\right)$
the Einstein equations reduce to a set of nested linear differential equations in the radial coordinate ' r '.
(Chesler, Yaffe, 2012)

Holography

Out of equilibrium we want to start with:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

and evolve it forward in time. Using
$d s^{2}=2 d t(d r-A(t, z, r) d t-F(t, z, r) d z)+\Sigma^{2}(t, r, z)\left(e^{B(t, z, r)} d x_{\perp}^{2}+e^{-B(t, z, r)} d z^{2}\right)$
the Einstein equations reduce to a set of nested linear differential equations in the radial coordinate ' r '. We have solved these equations numerically.

Holography

Holography

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.4$)
$\frac{T^{\text {xx }}}{P_{0}}$
$\tanh (x / 10 /)$

Holography

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.4$)

Holography

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.4$)

$\tanh (x / 10 /)$
t/l

Holography

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.4$)

Holography

We find $\left(\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.4\right)$

Holography

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.4$)

Holography

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.4$)

Holography

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.4$)

$\tanh (x / 10 /)$

Summary

Summary

In a 2d CFT we find

$$
\begin{aligned}
& T^{00}=T_{+}(\infty)+T_{-}(-\infty)=\frac{1}{2}\left(P_{\text {left }}+P_{\text {right }}\right), \\
& T^{01}=T_{-}(-\infty)-T_{+}(\infty)=\frac{1}{2}\left(P_{\text {left }}-P_{\text {right }}\right)
\end{aligned}
$$

Summary

Also for linearized ideal fluids in d dimensions

$$
T^{00}(t \rightarrow \infty)=(d-1) P_{0}, \quad T^{01}(t \rightarrow \infty)=\frac{\Delta P}{c_{s}}, \quad T^{11}(t \rightarrow \infty)=P_{0}
$$

Summary
Otherwise, using the conjecture:

Summary

Otherwise, using the conjecture:

We find:

Summary
Otherwise, using the conjecture:

We find:

What about the blue branch?

Thank you

