
Steady states in 
conformal field theories

Based on work with A. Karch, H-C. Chang and I. Amado.
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The problem I want to consider is as follows: at 
t=0 we prepare an initial state connected to two 
heat baths:
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The problem I want to consider is as follows: at 
t=0 we prepare an initial state connected to two 
heat baths, which are infinitely far apart.
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What can we say about the final state at late 
times?
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Conjecture: If the field theory thermalizes 
quickly then the late time steady state is 
universal.
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Plan:

•Prove the conjecture for 2d CFT’s

•Prove the conjecture in idealized case

•Motivate the conjecture

•Provide evidence for the conjecture in non 
trivial configurations
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Steady states in 2d CFT’s
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We fix T11(t,x=0) = Pleft and T11(t,x=L)=Pright.
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What are T11 and T01 for all t and x?
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For a conformal theory (using                  ) 
T zz = T (z) T z̄z̄ = T̄ (z̄) T z̄z = 0

ds2 = dzdz̄

Monday, February 16, 15



Steady states in 2d CFT’s

T11

x

0 L

Pleft

Pright

t t

T01

x

0 L

?
?

For a conformal theory (using                  ) 

In the                            coordinate system
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✓
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◆
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Steady states in 2d CFT’s

T+(1) + T�(1) = Pright , T�(1)� T+(1) = 0

At x=∞ we have the right heat bath
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Steady states in 2d CFT’s

T+(1) + T�(1) = Pright , T�(1)� T+(1) = 0

At x=∞ we have the right heat bath

(See also, Bernard and Doyon, 2013; Bhaseen et. al., 2013)
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Steady states in 2d CFT’s
The exact same analysis can be used to consider 
more complicated configurations:
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Steady states in 2d CFT’s
The exact same analysis can be used to consider 
more complicated configurations:
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T 01(t ! 1) =
⇡
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2
L � c+T
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1 + �R

◆
+

1

2⇡

✓
k�µ

�
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◆
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Steady states in 2d CFT’s
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Steady states in 2d CFT’s
Main ingredient:
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Steady states in 2d CFT’s
Main ingredient:

T
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✓
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◆

It follows from:

@µT
µ⌫ = 0 , Tµ

µ = 0
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Generalizing to higher dimensions
Energy momentum conservation and conformal 
invariance imply:
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So for d>2 we have 4 components of the stress 
tensor but only three non trivial equations.
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Generalizing to higher dimensions
Energy momentum conservation and conformal 
invariance imply:

@µT
µ⌫ = 0 , Tµ
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So for d>2 we have 4 components of the stress 
tensor but only three non trivial equations.

We need more input.
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Higher dimensions: an idealized case
Energy momentum conservation and conformal 
invariance imply:
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Let us assume, in addition, that the system is 
described by a perfect inviscid fluid:

Tµ⌫ = ✏(P )uµu⌫ + (⌘µ⌫ + uµu⌫)P
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Let us assume, in addition, that the system is 
described by a perfect inviscid fluid:

Tµ⌫ = ✏(P )uµu⌫ + (⌘µ⌫ + uµu⌫)P
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Higher dimensions: an idealized case
Energy momentum conservation and conformal 
invariance imply:
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µ = 0
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Let us assume, in addition, that the system is 
described by a perfect inviscid fluid:

Tµ⌫ = ✏(P )uµu⌫ + (⌘µ⌫ + uµu⌫)P

energy density 4-velocity Pressure
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Let us assume, in addition, that the system is 
described by a perfect inviscid fluid:

Tµ⌫ = ✏(P )uµu⌫ + (⌘µ⌫ + uµu⌫)P

Higher dimensions: an idealized case
Energy momentum conservation and conformal 
invariance imply:

@µT
µ⌫ = 0 , Tµ

µ = 0
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Let us assume, in addition, that the system is 
described by a perfect inviscid fluid:

Tµ⌫ = ✏(P )uµu⌫ + (⌘µ⌫ + uµu⌫)P

Higher dimensions: an idealized case
Energy momentum conservation and conformal 
invariance imply:

@µT
µ⌫ = 0 , Tµ

µ = 0

If the pressure difference between the baths is small, 
then sound modes will dominate the dynamics
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Let us assume, in addition, that the system is 
described by a perfect inviscid fluid:

Tµ⌫ = ✏(P )uµu⌫ + (⌘µ⌫ + uµu⌫)P

Higher dimensions: an idealized case
Energy momentum conservation and conformal 
invariance imply:

@µT
µ⌫ = 0 , Tµ

µ = 0

If the pressure difference between the baths is small, 
then sound modes will dominate the dynamics

✏ = (d� 1)P , P = P0 + �P (t, x) , u

µ = (1, ��(t, x), 0, . . . , 0)

�P = P�(x� cst) + P+(x+ cst)

��(t, x) = �0 +
1

dP0cs
(P+(x+ cst)� P�(x� cst)) ,
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Let us assume, in addition, that the system is 
described by a perfect inviscid fluid:

Tµ⌫ = ✏(P )uµu⌫ + (⌘µ⌫ + uµu⌫)P

Higher dimensions: an idealized case
Energy momentum conservation and conformal 
invariance imply:

@µT
µ⌫ = 0 , Tµ

µ = 0

If the pressure difference between the baths is small, 
then sound modes will dominate the dynamics

✏ = (d� 1)P , P = P0 + �P (t, x) , u

µ = (1, ��(t, x), 0, . . . , 0)

�P = P�(x� cst) + P+(x+ cst)

��(t, x) = �0 +
1

dP0cs
(P+(x+ cst)� P�(x� cst)) ,

speed of sound
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Higher dimensions: an idealized case

�P = P�(x� cst) + P+(x+ cst)

��(t, x) = �0 +
1

dP0cs
(P+(x+ cst)� P�(x� cst)) ,
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Higher dimensions: an idealized case

The linearized equations for δP and δβ are wave 
equations. Their general solution is given by:

�P = P�(x� cst) + P+(x+ cst)

��(t, x) = �0 +
1

dP0cs
(P+(x+ cst)� P�(x� cst)) ,
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Higher dimensions: an idealized case

So we can use the same strategy as before to obtain 
the late time behavior of the pressure and velocity.

The linearized equations for δP and δβ are wave 
equations. Their general solution is given by:
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Higher dimensions: an idealized case

The linearized equations for δP and δβ are wave 
equations. Their general solution is given by:

�P = P�(x� cst) + P+(x+ cst)

��(t, x) = �0 +
1

dP0cs
(P+(x+ cst)� P�(x� cst)) ,

So we can use the same strategy as before to obtain 
the late time behavior of the pressure and velocity:

At x→∓∞ we impose that the system is connected to 
a heat bath. This determines the t→∞ behavior

T 00(t ! 1) = (d� 1)P0 , T 01(t ! 1) =
�P

cs
, T 11(t ! 1) = P0
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Higher dimensions: the general case
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Higher dimensions: the general case

Test 1: nonlinear viscous hydrodynamics.

We find:

Test 2: Holography.
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A planar event horizon:
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9
p
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� =
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k

e.g., in ABJM
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the Einstein equations reduce to a set of nested linear 
differential equations in the radial coordinate ‘r’. We 
have solved these equations numerically.
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In a 2d CFT we find

T 00 = T+(1) + T�(�1) =
1

2

⇣
Pleft + Pright

⌘
,

T 01 = T�(�1)� T+(1) =
1

2

⇣
Pleft � Pright

⌘
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Summary

Also for linearized ideal fluids in d dimensions

T 00(t ! 1) = (d� 1)P0 , T 01(t ! 1) =
�P

cs
, T 11(t ! 1) = P0
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Thank you
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