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Introduction

@ There has been considerable interest recently in
entanglement entropy.

® Sp= —Tr(palog pa).
@ Holographic Ryu-Takayanagi
Cr,,| " (RT) prescription: area of

co-dimension two minimal
@D surface homologous to A
‘ AdS A

B d+2 S —
V z A 4GN
z>a (UV cut off)

@ Leading UV divergence: area of
separating surface.
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Significance of entanglement entropy

A useful computable, particularly in applied holography, but also

@ Does entanglement entropy
capture global structure in the
dual spacetime?

@ ER = EPR? (Maldacena and
Susskind)
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Other measures of entanglement

Many other measures of entanglement: holographic
realisations?
@ Consider density matrix p for theory with H = H1 ® Ho.

@ Define entanglement negativity £ = log Tr(p'2), with T
being a partial transpose over Ho.

@ Well studied in CFT (Calabrese et al) but replica trick
requires a non-integral number of copies of the bulk!
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Key questions

@ Dependence of EE on shape and on field theory.
@ First law for EE.

© Dependence of EE on the state in theory e.g. excited
states.

© Other bulk computables e.g. differential entropy and their
roles in field theory.

(Balasubramanian, Hartman, Headrick, Hubeny, Liu, Mezei,
Myers et al, Rangamani, Rosenhaus, Smolkin,Tayakanagi et al,
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Massive flavors

@ Brane systems such as D3/D7 are a natural framework in
which to explore these questions.

@ Well-understood dual field theory and phenomenologically
interesting (ltzhaki et al ‘98, Karch and Katz '02).
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Reference

@ Peter Jones, Kostas Skenderis and Marika Taylor
“Entanglement and differential entropy for massive flavors”,
to appear soon.

@ Also phenomenological applications with Nick Evans.
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@ The D3/D7 system

@ Entanglement entropy

@ Field theory interpretation
@ Differential entropy
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The D3/D7 system

@ Consider N D3-branes and N; < N parallel coincident
D7-branes.

@ In the decoupling limit the D7-branes wrap an AdSs x S°
submanifold of AdSs x S°

ds? = % (022 + dx - dx) + d6® + sin? 923 + cos? O
i.e. 0 =m/2.
@ The dual theory is a CFT, SYM coupled to A/ = 2 massless
hypermultiplets transforming in the bifundamental of
SU(N;) x SU(N5).
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Massive flavors

@ Separating the D3 and D7 branes causes the hypers to
become massive.

@ From the brane probe perspective, the embedding is
(Karch and Katz, '02)

sin?0 = (1 — m?2?),

i.e. the D7-branes extend to z = 1/m, with m the mass.
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@ The corresponding deformation of the CFT is by a
dimension three operator, the fermion mass,

| = lger +m / d*x\/—gOs

where the holographic normalization of the operator (brane
holographic renormalization (Karch et al, '05)) is

1
<O3(X)O3(0)> = 16T7R ()(6)
with T7 the D7-brane tension.
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IR behaviour

@ Integrating out the massive hypers leads to an effective IR
theory

1
I=lsna-+ 5 [ IGO0+ -
where Og is a dimension six SYM operator, which breaks

the R symmetry to SO(4).

@ Note that the finite extent of the probe D7-brane tallies with

the field theory behaviour at energy scales far smaller than
m.

@ However, in the field theory there is no sharp transition at
A=m.
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@ The D3/D7 system

@ Entanglement entropy
@ Field theory interpretation
@ Differential entropy
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Entanglement entropy

@ To compute EE for D3/D7 we should find the full
backreacted metric, asymptoting to AdSs x S°, extract the
effective 5d Einstein metric and apply the RT formula.

@ Backreacted metric depends on (z, 6, ¢) — cohomogeneity
three problem.

@ Smearing over the sphere simplifies problem (Mas, Nunez,
Ramallo et al) but is obscure in field theory.

@ Extracting 5d Einstein metric from an inhomogeneous 10d
metric is also not simple.
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Probe approximation

As usual we work in the quenched approximation Ny < Ne.

@ Effectively we therefore consider solving

= hagra = T [ /=74

with ~,p the induced brane metric, iteratively around
AdS5 X 85.

@ EE is sensitive to the 5d Einstein metric so we cannot work
just with D-brane action, even at order T5.

@ Backreaction at linear order in T is complex, as
embedding breaks symmetry to £31 x SO(4).
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Shortcuts?

(Karch et al, 2013/2014) have proposed various shortcut
methods:

@ Exploit CHM map for spherical entangling regions i.e.
solve a BH perturbation problem.
e Only works for spherical regions.
e CHM map is very complicated for D7-brane embedding
(intractable for finite mass, even at zero density).
@ Use results of (Graham/Karch) for conomogeneity two
brane embeddings.
e Change in EE depends only on a subset of the metric
perturbation in ten dimensions.
e How would this method work at higher order in T7 or for
other brane embeddings?
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A systematic perturbative approach

The second method is actually equivalent to using Kaluza-Klein
holography, (Skenderis, M.T. ’06).

@ Consider any background which is a perturbation of
AdSs x S°, i.e.

ds? = % (a/z2 +dx - dx) + dQ2

+5gmn(z7 Xl’“ 0,)

The pertubations can be decomposed in terms of spherical
harmonics.

@ Kaluza-Klein holography gives an algorithmic approach to
extracting the 5d Einstein metric (and all other 5d fields)
from the perturbation harmonics.
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Perturbation in 5d Einstein metric

@ In the case at hand, the change in the 5d Einstein metric is
particularly simple: forz <1/m

5(ds?) = % (f(z)d22 + h(z)dx - dx)

with

7‘(Z) = (f(z) + zH(2)) = %(1 _ m222)2

where o= Vss T7 = 2r? T-.

@ The gauge invariant combination is f(z); require also
h(1/m) = K (1/m) = 0 for continuity of metric and first
derivative at z=1/m.
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Change in EE

We consider three types of domains:
@ Slabin y, z plane, width / = Ax.
@ Half plane x > 0; Ax — oo limit of slab.

© Spherical region, of radius /; Casini-Huerta-Myers (CHM)
case.
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Entangling surfaces

) z Slab

RESEARCH
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Entangling surfaces

Suppressing the y, z directions:

Width |

Extension of slab into bulk

‘CH
RE
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Results for EE

For the slab:
@ AdSs result:

2 r(—1
s £ (1 vy
2Gn \ 2¢¢  6I(§)z*2

with L2 the regulated area of the y, z directions, e the UV
cutoff and z* the turning point of the bulk entangling
surface.

@ The turning point is linearly related to the slab width
I = CoZ*.
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Entangling surfaces

Since the D7-branes extend only to z = 1/m, the entanglement
depends on whether the turning point of the entangling surface
isasz*<1/morz*>1/m.

>
o

z<1/m D7-brane

z > 1/m : AdS region
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Results for EE

@ For mz* < 1:

2 —
sso B (12 5 VET(18) oV T(1/3)
48Gpn

22 3" 1222 T(7/6) 12 T(11/6)

+§m210g(e3/22*3)> + 0 Sgauge (M, €).

@ For mz* > 1:

48m* z*6

g 48Gy (252 og(me)

4. ) +5Sgauge(m, €)
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Comments

@ The entanglement entropy has a fourth order phase
transition at mz* = 1.

@ The gauge dependent terms depend on our choice of h(z),
i.e. the gauge choice for the metric.

@ The relation between the slab width / and the turning point
zZ* is corrected perturbatively:

I=(co+ toci(Z2*)+---)Z"
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Other entangling regions

@ The half space is obtained as the | — oc limit at fixed m:

toL2

05 = 96Gy

1
(262 4 2m210g(m6)> + (5Sgauge(ma €)

@ There are analogous results for the spherical region; fifth
order transition at mz* = 1.
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Phase transitions

@ Recall that the (gauge invariant) metric perturbation is

f2)= B2 z<

1
12 m

and hence second derivatives of the metric are
discontinuous at mz = 1.

@ The EE for the slab inherits a discontinuity only at fourth
orderi.e. in
os
or ..
(due to symmetry, the shift in the turning point etc).
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Phase transitions

@ In the fully backreacted solution we would not expect sharp
discontinuities at z = 1/m.

@ The phase transitions at mz* = 1 would therefore seem to
be relics of the probe approximation.

Metrig change

1/m

H
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Scheme dependence and finite quantities

@ EE is UV divergent.
@ In afield theory it is natural to define a renormalized EE:

Sren = Sbare + Sct

@ For the RT surface, the counterterms arise from volume
renormalisation (Witten, Graham), i.e.

Sren: 1 /dd_1X\/§—1 dd_ZX\/ﬁ‘f'"'
N J~ 4(

4G d—2)Gn J,

with H the induced boundary metric.
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Massless flavors

For massless flavors we find
1 3 1 fo 2
ren T o~ I — 1 T~ a H ot
S GNAdx\@ SGN( +5 ) 7dxv +

where ellipses denote terms which vanish for flat boundary
regions.
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Scheme dependence and finite quantities

@ The gauge dependence found earlier cancels in the
renormalized quantity i.e. no dependence on metric
perturbation h(e).

@ The counterterm contributions also do not depend on Ax
for the slab.

@ There are additional logarithmic counterterms in the
massive case.

@ For the spherical region there are counterterms depending
on the curvature of the boundary of the entangling surface .
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Finite quantities by differentiation

Various proposals exist to isolate finite terms in EE:
@ Finite mass in d = 4 (Hertzberg, Wilczek)

)
4
Suw =m a(mR)e

@ Finite slab width (Cardy et al)

0S

@ Spherical regions in UV conformal theories (Liu and Mezei)

0 ([0S

for d = 4. STAG y) e

Marika Taylor Flavor entanglement



Finite quantities by differentiation

@ One can use the renormalized entanglement entropy to
show why each of these is indeed finite in a mass
deformed CFT.

@ With finite m and / these differentiated quantities are of
limited use, as each throws away terms with physical
interpretations:

@ E.g. for a slab with m/ > 1:
toL? 1
58S =
Si 48Gp <8m4z*6)

0Sm = 48Gy (m  8mAz+6

and
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@ The D3/D7 system

@ Entanglement entropy

@ Field theory interpretation
@ Differential entropy
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Deformations of the CFT

@ Consider first the half space:

bl [ 2
0S8 = m (262 +2m log(me) + 5Sgauge(ma 6)

@ The m — 0 limit follows from conformal invariance and
agrees with the result for free massless hypermultiplets.

STAG y) e

Marika Taylor Flavor entanglement



Deformations of the CFT

@ At finite mass the CFT is deformed as

| = lcpr + m/d4X\/ —g03.

@ The change in the entanglement entropy under a relevant
perturbation of dimension A = (d + 2)/2 has been argued

to contain universal log divergences (Rosenhaus,
Smolkin):

d+2

o 2(d—2) T2 €Yy
3S=Nm 4(d—1)r(i)A| g(g/ﬂ),

with A/ the operator normalisation and A the area of the
slab.

@ Note that the change at order m vanishes, due to STAG
conformal invariance.
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Deformations of the CFT

@ Using the known operator normalisation we indeed obtain

6S = @mzfllog <€UV>
3 €IR

in agreement with our result, setting ;g = 1/m.

@ Moreover, the result agrees with the results for free
massive hypers, i.e. there is a non-renormalisation
theorem (which was not obvious given A/ = 2 susy).
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Finite slab width

The modular Hamiltonian is not known for a finite width slab.
But:

@ The massless case:

2 (1 r(-3 L2 1 r(-3
S=__— —2+ﬁ1( 3) ), b 72+ﬁ (1 3)
2GyN \ 2¢ 6F(§)z*2 48Gpy \ 2¢ 2 F(é)z*2

can be understood in terms of free (conformal) fields
(Hertzberg, Wilczek etc)..
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Finite slab width

We can also understand the m/ >> 1 limit:
@ The leading finite contribution is

_ pl? 1
08 = 48Gy <_48m4z*6> '

@ Integrating out the massive flavors results in

1
I'=lsym + 2 / d*xv/=g0g
with Og an R-charged operator.
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Finite slab width

@ Symmetry implies that the leading contribution to the
entanglement entropy is at order 1/m*.

@ By translational invariance along the slab the EE scales as

L2
@ Hence
L2
0S8 ~ ey
on dimensional grounds, since there is no other scale in
the theory.

We may also be able to match the coefficient (?)
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@ The D3/D7 system

@ Entanglement entropy

@ Field theory interpretation
o Differential entropy
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Differential entropy

@ The differential entropy is defined as
E = [S(k) = S(k N k)]
k=1
where {l} is a set of intervals partitioning the boundary.

@ We will take {/x} to be slabs of width Ax, with intersection
of width (Ax — Lx/n), and take n — oc.
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Holes and differential entropy

@ In AdSs the differential entropy computes the area of a
hole of radius z*, the turning point of the entangling
surface associated with each slab.

@ This equivalence can be proved geometrically
(Balasubramanian et al; Myers et al; Headrick et al).
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Differential entropy

Witten diagram showing differential entropy: differential entropy
computes area of red hole.
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Differential entropy for massive flavor system

@ The massive flavor system is asymptotic to AdSs x S° but
the symmetry is broken to E3' x SO(4).

@ What does the differential entropy actually compute?

STAG y) e

Marika Taylor Flavor entanglement



Differential entropy for flavor system

- z<1/m S z<Zz"
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Differential entropy for massive flavor system

It still computes the area of a hole in the 5d Einstein metric. J

@ For m/ > 1 the metric is just AdSs, yet the differential
entropy is changed:

.V cs toCS
4Gy \ (Ax)®  384mA(Ax)T

with ¢y the number such that Ax = cgz* + - - -.

@ The metric is unchanged, but the relation between Ax and
the turning points of the entangling surface z* is changed.
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Differential entropy for massive flavor system

@ The change is consistent with the viewpoint of the IR
theory as an irrelevant deformation of SYM.

@ Differential entropy however seems to tell us only about the
5d metric, not the 10d spacetime.
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Conclusions

@ We have developed a systematic method for computing EE
for probe brane systems, which is more widely applicable
to other 10d spacetimes.

@ Finite terms in the EE may be obtained using volume
renormalization for the minimal surfaces.

@ Exact coefficients in the EE can be matched.

@ Differential entropy computes the area in the 5d Einstein
metric, not the "physical" 10d metric.
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@ Phenomenology: finite temperature, finite density, phase
transitions?

@ Interpretations of differential entropy in the field theory?

@ General results for shape and field theory dependence
(including irrelevant deformations)?
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