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Introduction

There has been considerable interest recently in
entanglement entropy.

(Takayanagi)

SA = −Tr(ρA log ρA).
Holographic Ryu-Takayanagi
(RT) prescription: area of
co-dimension two minimal
surface homologous to A

SA =
A

4GN

Leading UV divergence: area of
separating surface.
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Significance of entanglement entropy

A useful computable, particularly in applied holography, but also

Does entanglement entropy
capture global structure in the
dual spacetime?
ER = EPR? (Maldacena and
Susskind)
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Other measures of entanglement

Many other measures of entanglement: holographic
realisations?

Consider density matrix ρ for theory with H = H1 ⊗H2.
Define entanglement negativity E = log Tr(ρT2), with T2
being a partial transpose over H2.
Well studied in CFT (Calabrese et al) but replica trick
requires a non-integral number of copies of the bulk!
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Key questions

1 Dependence of EE on shape and on field theory.
2 First law for EE.
3 Dependence of EE on the state in theory e.g. excited

states.
4 Other bulk computables e.g. differential entropy and their

roles in field theory.

(Balasubramanian, Hartman, Headrick, Hubeny, Liu, Mezei,
Myers et al, Rangamani, Rosenhaus, Smolkin,Tayakanagi et al,
· · · )
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Massive flavors

Brane systems such as D3/D7 are a natural framework in
which to explore these questions.
Well-understood dual field theory and phenomenologically
interesting (Itzhaki et al ’98, Karch and Katz ’02).
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Reference

Peter Jones, Kostas Skenderis and Marika Taylor
“Entanglement and differential entropy for massive flavors”,
to appear soon.
Also phenomenological applications with Nick Evans.
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The D3/D7 system

Consider Nc D3-branes and Nf � Nc parallel coincident
D7-branes.
In the decoupling limit the D7-branes wrap an AdS5 × S3

submanifold of AdS5 × S5

ds2 =
1
z2

(
dz2 + dx · dx

)
+ dθ2 + sin2 θdΩ2

3 + cos2 θdφ2

i.e. θ = π/2.
The dual theory is a CFT, SYM coupled to N = 2 massless
hypermultiplets transforming in the bifundamental of
SU(Nc)× SU(Nf ).
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Massive flavors

Separating the D3 and D7 branes causes the hypers to
become massive.
From the brane probe perspective, the embedding is
(Karch and Katz, ’02)

sin2 θ = (1−m2z2),

i.e. the D7-branes extend to z = 1/m, with m the mass.
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Deformation

The corresponding deformation of the CFT is by a
dimension three operator, the fermion mass,

I = ICFT + m
∫

d4x
√
−gO3

where the holographic normalization of the operator (brane
holographic renormalization (Karch et al, ’05)) is

〈O3(x)O3(0)〉 = 16T7R
(

1
x6

)
with T7 the D7-brane tension.
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IR behaviour

Integrating out the massive hypers leads to an effective IR
theory

I = ISYM +
1

m2

∫
d4x
√
−gO6 + · · ·

where O6 is a dimension six SYM operator, which breaks
the R symmetry to SO(4).
Note that the finite extent of the probe D7-brane tallies with
the field theory behaviour at energy scales far smaller than
m.
However, in the field theory there is no sharp transition at
Λ = m.
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Entanglement entropy

To compute EE for D3/D7 we should find the full
backreacted metric, asymptoting to AdS5 × S5, extract the
effective 5d Einstein metric and apply the RT formula.
Backreacted metric depends on (z, θ, φ)→ cohomogeneity
three problem.
Smearing over the sphere simplifies problem (Mas, Nunez,
Ramallo et al) but is obscure in field theory.
Extracting 5d Einstein metric from an inhomogeneous 10d
metric is also not simple.

Marika Taylor Flavor entanglement



STAG RESEARCH
CENTERSTAG RESEARCH

CENTERSTAG RESEARCH
CENTER

Probe approximation

As usual we work in the quenched approximation Nf � Nc .

Effectively we therefore consider solving

I = Isugra − T7

∫
d8√−γ + · · ·

with γab the induced brane metric, iteratively around
AdS5 × S5.
EE is sensitive to the 5d Einstein metric so we cannot work
just with D-brane action, even at order T7.
Backreaction at linear order in T7 is complex, as
embedding breaks symmetry to E3,1 × SO(4).

Marika Taylor Flavor entanglement



STAG RESEARCH
CENTERSTAG RESEARCH

CENTERSTAG RESEARCH
CENTER

Shortcuts?

(Karch et al, 2013/2014) have proposed various shortcut
methods:

1 Exploit CHM map for spherical entangling regions i.e.
solve a BH perturbation problem.

Only works for spherical regions.
CHM map is very complicated for D7-brane embedding
(intractable for finite mass, even at zero density).

2 Use results of (Graham/Karch) for cohomogeneity two
brane embeddings.

Change in EE depends only on a subset of the metric
perturbation in ten dimensions.
How would this method work at higher order in T7 or for
other brane embeddings?
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A systematic perturbative approach

The second method is actually equivalent to using Kaluza-Klein
holography, (Skenderis, M.T. ’06).

Consider any background which is a perturbation of
AdS5 × S5, i.e.

ds2 =
1
z2

(
dz2 + dx · dx

)
+ dΩ2

5

+δgmn(z, xµ, θi).

The pertubations can be decomposed in terms of spherical
harmonics.
Kaluza-Klein holography gives an algorithmic approach to
extracting the 5d Einstein metric (and all other 5d fields)
from the perturbation harmonics.
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Perturbation in 5d Einstein metric

In the case at hand, the change in the 5d Einstein metric is
particularly simple: for z ≤ 1/m

δ(ds2) =
1
z2

(
f (z)dz2 + h(z)dx · dx

)
with

f̃ (z) = (f (z) + zh′(z)) =
t0
12

(1−m2z2)2

where t0 = VS3T7 = 2π2T7.
The gauge invariant combination is f̃ (z); require also
h(1/m) = h′(1/m) = 0 for continuity of metric and first
derivative at z = 1/m.
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Change in EE

We consider three types of domains:
1 Slab in y , z plane, width l = ∆x .
2 Half plane x > 0; ∆x →∞ limit of slab.
3 Spherical region, of radius l ; Casini-Huerta-Myers (CHM)

case.
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Entangling surfaces
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Entangling surfaces

Suppressing the y, z directions:
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Results for EE

For the slab:

AdS5 result:

S =
L2

2GN

(
1

2ε2
+

√
πΓ(−1

3)

6Γ(1
6)z∗2

)

with L2 the regulated area of the y , z directions, ε the UV
cutoff and z∗ the turning point of the bulk entangling
surface.
The turning point is linearly related to the slab width

l = c0z∗.
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Entangling surfaces

Since the D7-branes extend only to z = 1/m, the entanglement
depends on whether the turning point of the entangling surface
is as z∗ < 1/m or z∗ ≥ 1/m.
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Results for EE

For mz∗ ≤ 1:

δS =
t0L2

48GN

(
1

2ε2
+

2
3

m2+

√
π

12z∗2
Γ(−1/3)

Γ(7/6)
+m4z∗2

√
π

12
Γ(1/3)

Γ(11/6)

+
2
3

m2log(ε3/2z∗3)

)
+ δSgauge(m, ε).

For mz∗ � 1:

δS =
t0L2

48GN

(
1

2ε2
+2m2log(mε)− 1

48m4z∗6
+· · ·

)
+δSgauge(m, ε)
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Comments

The entanglement entropy has a fourth order phase
transition at mz∗ = 1.
The gauge dependent terms depend on our choice of h(z),
i.e. the gauge choice for the metric.
The relation between the slab width l and the turning point
z∗ is corrected perturbatively:

l = (c0 + t0c1(z∗) + · · · )z∗
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Other entangling regions

The half space is obtained as the l →∞ limit at fixed m:

δS =
t0L2

96GN

(
1

2ε2
+ 2m2log(mε)

)
+ δSgauge(m, ε)

There are analogous results for the spherical region; fifth
order transition at mz∗ = 1.
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Phase transitions

Recall that the (gauge invariant) metric perturbation is

f̃ (z) =
t0
12

(1−m2z2)2 z ≤ 1
m

and hence second derivatives of the metric are
discontinuous at mz = 1.
The EE for the slab inherits a discontinuity only at fourth
order i.e. in (

∂4S
∂l4

)
m

(due to symmetry, the shift in the turning point etc).
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Phase transitions

In the fully backreacted solution we would not expect sharp
discontinuities at z = 1/m.
The phase transitions at mz∗ = 1 would therefore seem to
be relics of the probe approximation.
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Scheme dependence and finite quantities

EE is UV divergent.
In a field theory it is natural to define a renormalized EE:

Sren = Sbare + Sct

For the RT surface, the counterterms arise from volume
renormalisation (Witten, Graham), i.e.

Sren =
1

4GN

∫
γ

dd−1x
√

g − 1
4(d − 2)GN

∫
∂γ

dd−2x
√

H + · · ·

with H the induced boundary metric.
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Massless flavors

For massless flavors we find

Sren =
1

4GN

∫
γ

d3x
√

g − 1
8GN

(1 +
t0
24

)

∫
∂γ

d2x
√

H + · · ·

where ellipses denote terms which vanish for flat boundary
regions.
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Scheme dependence and finite quantities

The gauge dependence found earlier cancels in the
renormalized quantity i.e. no dependence on metric
perturbation h(ε).
The counterterm contributions also do not depend on ∆x
for the slab.
There are additional logarithmic counterterms in the
massive case.
For the spherical region there are counterterms depending
on the curvature of the boundary of the entangling surface .
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Finite quantities by differentiation

Various proposals exist to isolate finite terms in EE:
Finite mass in d = 4 (Hertzberg, Wilczek)

SHW = m4 ∂2S
∂(m2)2

Finite slab width (Cardy et al)

Sl = l
∂S
∂l

Spherical regions in UV conformal theories (Liu and Mezei)

SLM = l
∂

∂l

(
∂S
∂l
− 2S

)
.

for d = 4.
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Finite quantities by differentiation

One can use the renormalized entanglement entropy to
show why each of these is indeed finite in a mass
deformed CFT.
With finite m and l these differentiated quantities are of
limited use, as each throws away terms with physical
interpretations:
E.g. for a slab with ml � 1:

δSl =
t0L2

48GN

(
1

8m4z∗6

)

and

δSm =
t0L2

48GN

(
m2 − 1

8m4z∗6

)
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Deformations of the CFT

Consider first the half space:

δS =
t0L2

48GN

(
1

2ε2
+ 2m2log(mε)

)
+ δSgauge(m, ε)

The m→ 0 limit follows from conformal invariance and
agrees with the result for free massless hypermultiplets.
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Deformations of the CFT

At finite mass the CFT is deformed as

I = ICFT + m
∫

d4x
√
−gO3.

The change in the entanglement entropy under a relevant
perturbation of dimension ∆ = (d + 2)/2 has been argued
to contain universal log divergences (Rosenhaus,
Smolkin):

δS = Nm2 (d − 2)

4(d − 1)

π
d+2

2

Γ(d+2
2 )
A log

(
εUV

εIR

)
,

with N the operator normalisation and A the area of the
slab.
Note that the change at order m vanishes, due to
conformal invariance.
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Deformations of the CFT

Using the known operator normalisation we indeed obtain

δS =
2πt0

3
m2A log

(
εUV

εIR

)
in agreement with our result, setting εIR = 1/m.
Moreover, the result agrees with the results for free
massive hypers, i.e. there is a non-renormalisation
theorem (which was not obvious given N = 2 susy).
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Finite slab width

The modular Hamiltonian is not known for a finite width slab.
But:

The massless case:

S =
L2

2GN

(
1

2ε2
+

√
πΓ(−1

3)

6Γ(1
6)z∗2

)
+

t0L2

48GN

(
1

2ε2
+

√
π

2
Γ(−1

3)

Γ(1
6)z∗2

)

can be understood in terms of free (conformal) fields
(Hertzberg, Wilczek etc)..
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Finite slab width

We can also understand the ml � 1 limit:
The leading finite contribution is

δS =
t0L2

48GN

(
− 1

48m4z∗6

)
.

Integrating out the massive flavors results in

I = ISYM +
1

m2

∫
d4x
√
−gO6

with O6 an R-charged operator.
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Finite slab width

Symmetry implies that the leading contribution to the
entanglement entropy is at order 1/m4.
By translational invariance along the slab the EE scales as
L2.
Hence

δS ∼ L2

m4l6

on dimensional grounds, since there is no other scale in
the theory.

We may also be able to match the coefficient (?)
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Differential entropy

The differential entropy is defined as

E =
∞∑

k=1

[S(Ik )− S(Ik ∩ Ik+1)]

where {Ik} is a set of intervals partitioning the boundary.
We will take {Ik} to be slabs of width ∆x , with intersection
of width (∆x − Lx/n), and take n→∞.
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Holes and differential entropy

In AdS5 the differential entropy computes the area of a
hole of radius z∗, the turning point of the entangling
surface associated with each slab.
This equivalence can be proved geometrically
(Balasubramanian et al; Myers et al; Headrick et al).
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Differential entropy

Witten diagram showing differential entropy: differential entropy
computes area of red hole.
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Differential entropy for massive flavor system

The massive flavor system is asymptotic to AdS5 × S5 but
the symmetry is broken to E3,1 × SO(4).
What does the differential entropy actually compute?
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Differential entropy for flavor system
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Differential entropy for massive flavor system

It still computes the area of a hole in the 5d Einstein metric.

For ml � 1 the metric is just AdS5, yet the differential
entropy is changed:

E =
V

4GN

(
c3

0
(∆x)3 +

t0c6
0

384m4(∆x)7

)

with c0 the number such that ∆x = c0z∗ + · · · .
The metric is unchanged, but the relation between ∆x and
the turning points of the entangling surface z∗ is changed.
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Differential entropy for massive flavor system

The change is consistent with the viewpoint of the IR
theory as an irrelevant deformation of SYM.
Differential entropy however seems to tell us only about the
5d metric, not the 10d spacetime.
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Conclusions

We have developed a systematic method for computing EE
for probe brane systems, which is more widely applicable
to other 10d spacetimes.
Finite terms in the EE may be obtained using volume
renormalization for the minimal surfaces.
Exact coefficients in the EE can be matched.
Differential entropy computes the area in the 5d Einstein
metric, not the "physical" 10d metric.
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Outlook

Phenomenology: finite temperature, finite density, phase
transitions?
Interpretations of differential entropy in the field theory?
General results for shape and field theory dependence
(including irrelevant deformations)?
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