Toda equation, $\mathcal{N}=2$ SCFTs and Euclidean holography

K. Siampos,

Albert Einstein Center for Fundamental Physics,
University of Bern
based on works with
J. Gath, A. Mukhopadhyay, A. Petkou, P. M. Petropoulos and K. Sfetsos

Institute of Theoretical Physics, Aristotle University of Thessaloniki,
17 February, 2015

SYNOPSIS

Continual Toda equation as a toolkit for studying:

Supergravity solutions:

(1) 11d SUGRA solutions with $S O(2,4) \times S O(3) \times U(1)_{R}$ isometry.
(2) \ddagger additional $U(1)$ symmetry - No smearing.
(3) Explore the 11d landscape of qualitatively different solutions - qualitatively different SCFTs.

Euclidean holography:

(1) 4d WSD \& Einstein metrics with a symmetry, i.e. Przanowski-Tod \& Calderbank-Pedersen.
(2) Fefferman-Graham expansion and boundary data.

Plan of the talk

(1) Gravity duals of $\mathcal{N}=2$ SCFTs

(2) The continual Toda equation

(3) Construction of a non- U (1) SOLution
(4) EuCLIDEAN holography
(3) Discussion \& OUtlook

Gravity duals of $\mathcal{N}=2$ SCFTs

General M-theory solution which preserves four dimensional $\mathcal{N}=2$ superconformal symmetry, with $S O(2,4) \times S O(3) \times U(1)_{R}$ isometry, was constructed in Lin-Lunin-Maldacena (2004):

$$
\begin{aligned}
& \mathrm{d} s_{11}^{2}=\kappa_{11}^{\frac{2}{3}} \mathrm{e}^{2 \lambda}\left(4 \mathrm{~d} s_{\mathrm{AdS}_{5}}^{2}+z^{2} \mathrm{e}^{-6 \lambda} \mathrm{~d} \Omega_{2}^{2}+\frac{4}{1-z \partial_{z} \Psi}(\mathrm{~d} \varphi+\omega)^{2}-\frac{\partial_{z} \Psi}{z} \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}\right), \\
& \omega=\omega_{x} \mathrm{~d} x+\omega_{y} \mathrm{~d} y, \quad \omega_{x}=\frac{1}{2} \partial_{y} \Psi, \quad \omega_{y}=-\frac{1}{2} \partial_{x} \Psi, \\
& \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=\mathrm{d} z^{2}+\mathrm{e}^{\Psi}\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right), \quad \mathrm{e}^{-6 \lambda}=-\frac{\partial_{z} \Psi}{z\left(1-z \partial_{z} \Psi\right)}, \quad G_{4}=\mathrm{d} C_{3}=\kappa_{11} F_{2} \wedge \mathrm{~d} \Omega_{2}, \\
& F_{2}=2(\mathrm{~d} \varphi+\omega) \wedge \mathrm{d}\left(z^{3} \mathrm{e}^{-6 \lambda}\right)+2 z\left(1-z^{2} \mathrm{e}^{-6 \lambda}\right) \mathrm{d} \omega-\partial_{z} \mathrm{e}^{\Psi} \mathrm{d} x \wedge \mathrm{~d} y, \quad \kappa_{11}=\frac{\pi \ell_{P}^{3}}{2},
\end{aligned}
$$

where $\Psi(x, y, z)$ satisfies the continual Toda equation:

$$
\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \Psi+\partial_{z}^{2} \mathrm{e}^{\Psi}=0
$$

where $z \in\left[0, z_{c}\right]$ and $z_{c}: e^{\Psi} \sim z_{c}-z, \quad \partial_{z} \Psi \rightarrow \infty$.
Regularity of the metric when S^{2} shrinks to zero size, requires

$$
z=0: \quad \mathrm{e}^{\Psi}=\text { finite } \neq 0, \quad \partial_{z} \Psi=0, \quad \partial_{z} \Psi / z=\text { finite } \neq 0 .
$$

Plan of the talk

(1) GRavity duals of $\mathcal{N}=2$ SCFTS

(2) The continual Toda equation

(3) CONSTRUCTION OF A NON- $U(1)$ SOLUTION

(4) EUCLIDEAN HOLOGRAPHY
(5) Discussion \& OUtlook

The continual Toda equation

The molecule of Toda

$$
\begin{aligned}
& H=\frac{1}{2} p_{z}^{2}+\sum_{i=1}^{z-1}\left(\frac{1}{2} p_{i}^{2}+\mathrm{e}^{q_{i}-q_{i+1}}\right) \Longrightarrow \ddot{\Psi}_{i}+\sum_{j=1}^{z-1} K_{i \mid j} \mathrm{e}^{\Psi_{j}}=0, \\
& \Psi_{i}(T)=q_{i}-q_{i+1}, \quad K_{i \mid i}=2, \quad K_{i \mid i+1}=K_{i+1 \mid i}=-1, \quad i=1,2, \ldots, z-1, \quad z \in \mathbb{N} .
\end{aligned}
$$

where $K_{i \mid j}$ is the Cartan matrix of the classical Lie algebra $A_{z-1}: S U(z)$.
The Toda field theory
$\mathcal{L}=\frac{1}{2} \sum_{i, j=1}^{z-1} K_{i \mid j}^{-1} \partial \Psi_{i} \bar{\partial} \Psi_{j}+\sum_{i=1}^{z-1} \mathrm{e}^{\Psi_{i}} \Longrightarrow \partial \bar{\partial} \Psi_{i}=\sum_{j=1}^{z-1} K_{i \mid j} \mathrm{e}^{\Psi_{j}}, \quad q=\frac{1}{2}(x+i y), \quad \partial=\frac{\partial}{\partial q}=\partial_{x}-i \partial_{y}$,
The infinite limit - Saveliev (1990)

$$
z \rightarrow \infty, \quad K\left(z, z^{\prime}\right)=-\delta^{\prime \prime}\left(z-z^{\prime}\right) \quad \Longrightarrow \quad \partial \bar{\partial} \Psi+\partial_{z}^{2} \mathrm{e}^{\Psi}=0
$$

Methods for solving Toda

Solutions for special cases
(1) Separability:

$$
\begin{aligned}
& \mathrm{e}^{\Psi}=c_{3} \frac{|\partial f|^{2}}{\left(1-c_{3}|f|^{2}\right)^{2}}\left(-z^{2}+c_{1} z+c_{2}\right), \quad f=f(q), \\
& \text { Maldacena-Núñez (2000): } \quad \mathrm{e}^{\Psi}=4 \frac{N^{2}-z^{2}}{\left(1-r^{2}\right)^{2}}, \quad r^{2}=x^{2}+y^{2}, \\
& 0
\end{aligned}
$$

(2) Extra $U(1)$ symmetry:

$$
\operatorname{AdS}_{7} \times S^{4}: \quad e^{\Psi}=\operatorname{coth}^{2} \zeta, \quad r=\sinh ^{2} \zeta \sin ^{2} \vartheta, \quad z=\cosh ^{2} \zeta \cos ^{2} \vartheta
$$

and the Maldacena-Núñez solution.

Extra $U(1)$ - ELECTROSTATICS

Extra $U(1)$ symmetry - Ward's transformation: Ward (1990)

$$
(r, z, \Psi) \mapsto(\rho, \eta, \Phi): \quad \ln r=\partial_{\eta} \Phi, \quad z=\rho \partial_{\rho} \Phi, \quad \rho=r \mathrm{e}^{\Psi(r, z) / 2}
$$

where the Toda equation is "replaced" by a Poisson equation

$$
\frac{1}{r} \partial_{r}\left(r \partial_{r} \Psi\right)+\partial_{z}^{2} \mathrm{e}^{\Psi}=\delta\left(M_{5}\right) \Longrightarrow \frac{1}{\rho} \partial_{\rho}\left(\rho \partial_{\rho} \Phi\right)+\partial_{\eta}^{2} \Phi=\frac{\lambda(\eta) \delta(\rho)}{\rho}
$$

Boundary condition at $z=0$: Infinite conducting plane with a charge density $\lambda(\eta)$

$$
\begin{aligned}
& \Phi(\rho, \eta)=-\frac{1}{2} \int_{0}^{\infty} \mathrm{d} \eta_{1} \lambda\left(\eta_{1}\right) G\left(\rho, \eta ; \eta_{1}\right), \quad \lambda(\eta)=z(\rho=0, \eta) \\
& G\left(\rho, \eta ; \eta_{1}\right)=\frac{1}{\sqrt{\rho^{2}+\left(\eta-\eta_{1}\right)^{2}}}-\frac{1}{\sqrt{\rho^{2}+\left(\eta+\eta_{1}\right)^{2}}},\left.\quad G\left(\rho, \eta, \eta_{1}\right)\right|_{\eta=0}=0
\end{aligned}
$$

MALDACENA-NÚÑEZ

The Toda potential

$$
\mathrm{e}^{\Psi}=4 \frac{N^{2}-z^{2}}{\left(1-r^{2}\right)^{2}}, \quad z \in[0, N], \quad r \in[0,1] .
$$

Ward's transformation $(r, z, \Psi) \mapsto(\rho, \eta, \Phi)$

$$
\rho=\frac{2 r \sqrt{N^{2}-z^{2}}}{1-r^{2}} \geqslant 0, \quad \eta=\frac{1+r^{2}}{1-r^{2}} z \geqslant 0, \quad \Phi=z-N \tanh ^{-1} \frac{z}{N}+\frac{1+r^{2}}{1-r^{2}} z \ln r .
$$

Its charge density at $\rho=0$

$$
\lambda(\eta)=z(\rho=0, \eta)=\left\{\begin{array}{lr}
\eta, & 0 \leqslant \eta \leqslant N \\
N, & \eta \geqslant N
\end{array}\right.
$$

$A d S_{7} \times S^{4}$

The Toda frame

$$
\mathrm{e}^{\Psi}=\operatorname{coth}^{2} \zeta, \quad r=\sinh ^{2} \zeta \sin ^{2} \vartheta, \quad z=\cosh ^{2} \zeta \cos ^{2} \vartheta .
$$

Ward's transformation $(r, z, \Psi) \mapsto(\rho, \eta, \Phi)$

$$
\rho=\frac{1}{2} \sinh 2 \zeta \sin \vartheta, \quad \eta=\frac{1}{2} \cosh 2 \zeta \cos \vartheta, \quad \Phi=\frac{1}{2}\left(\cos \vartheta(1+\cosh 2 \zeta \ln r)+\ln \tan \frac{\vartheta}{2}\right) .
$$

Its charge density at $\rho=0$

$$
\lambda(\eta)=z(\rho=0, \eta)=\left\{\begin{array}{lr}
2 \eta, & 0 \leqslant \eta \leqslant \frac{1}{2}, \\
\eta+\frac{1}{2}, & \eta \geqslant \frac{1}{2} .
\end{array}\right.
$$

Electrostatics and beyond

Charge distributions with singularities - irregular punctures

Pathologies: ρ-small - smearing and ρ-large - conical singularities: $\mathbb{R}^{4} / \mathbb{Z}_{k}$.

Goal: Find Toda potentials which are not separable and depend on x, y, z.

Idea: Toda equation appears in Euclidean 4d metrics, i.e. RSD, Kählher and R=0, WSD and Einstein.

Electrostatics And beyond

Genuine solutions known for four-dimensional instantons with only $S U(2)$ isometry.
Riemann self-dual by Atiyah-Hitchin (1985).
Kähler and $R=0$ (WASD) by Pedersen-Poon (1990).
Weyl self-dual and Einstein by Tod (1994) \& Hitchin (1995).

A toolkit for regular solutions in 11d SUGRA with only $S O(2,4) \times S O(3) \times U(1)_{R}$ isometry:
(1) Singular "Atiyah-Hitchin" metrics - K. Sfetsos, P.M. Petropoulos and K.S. (2013).
(2) Pedersen-Poon metrics K. Sfetsos, P.M. Petropoulos and K.S. (2014).

PLAN OF THE TALK

(1) Gravity duals of $\mathcal{N}=2$ SCFTs

2 The continual Toda equation
(3) Construction of a non- $U(1)$ Solution
(4) EUCLIDEAN HOLOGRAPHY
(5) DISCUSSION \& OUTLOOK

LeBrun metrics

Kähler metric with symmetry and $R=0$ - WASD (canonical orientation)
LeBrun (1991)

$$
\mathrm{d} \ell_{\text {LeBrun }}^{2}=V(\mathrm{~d} \varphi+A)^{2}+V^{-1}\left(\mathrm{~d} z^{2}+\mathrm{e}^{\Psi}\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right)\right),
$$

where the $R=0$ and Kähler conditions translate to:

$$
\left\{\begin{array}{l}
\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \Psi+\partial_{z}^{2}\left(\mathrm{e}^{\Psi}\right)=\mathrm{e}^{\Psi} \nabla^{2} \Psi=0 \\
\left(\partial_{x}^{2}+\partial_{y}^{2}\right) V^{-1}+\partial_{z}^{2}\left(V^{-1} \mathrm{e}^{\Psi}\right)=0 \\
A=\partial_{x} V^{-1} \mathrm{~d} y \wedge \mathrm{~d} z+\partial_{y} V^{-1} \mathrm{~d} z \wedge \mathrm{~d} x+\partial_{z}\left(V^{-1} \mathrm{e}^{\Psi}\right) \mathrm{d} x \wedge \mathrm{~d} y
\end{array}\right.
$$

with Kähler form

$$
J=(\mathrm{d} \varphi+A) \wedge \mathrm{d} z-V^{-1} \mathrm{e}^{\Psi} \mathrm{d} x \wedge \mathrm{~d} y, \quad \mathrm{~d} J=0 .
$$

Solutions usually involve electrostatics, i.e. two commuting isometries.

Going beyond using solutions with no commuting isometries.

Foliations with $S U(2)$ ISOMETRY

A four dimensional metric:

$$
\begin{aligned}
& \mathrm{d} \ell^{2}=\Omega_{1} \Omega_{2} \Omega_{3} \mathrm{~d} T^{2}+\frac{\Omega_{2} \Omega_{3}}{\Omega_{1}} \sigma_{1}^{2}+\frac{\Omega_{1} \Omega_{3}}{\Omega_{2}} \sigma_{2}^{2}+\frac{\Omega_{1} \Omega_{2}}{\Omega_{3}} \sigma_{3}^{2}, \\
& \sigma_{1}+i \sigma_{2}=-\mathrm{e}^{i \psi}(i \mathrm{~d} \vartheta+\sin \vartheta \mathrm{d} \varphi), \quad \sigma_{3}=\mathrm{d} \psi+\cos \vartheta \mathrm{d} \varphi, \quad \mathrm{~d} \sigma_{i}=\frac{1}{2} \varepsilon_{i j k} \sigma_{j} \wedge \sigma_{k}, \\
& \psi \in[-2 \pi, 2 \pi], \quad \vartheta \in[0, \pi], \quad \varphi \in[0,2 \pi] .
\end{aligned}
$$

The metric is invariant under the action of the Killing (right-invariant) fields

$$
\left\{\begin{array}{l}
\xi_{1}=-\cos \varphi \cot \vartheta \partial_{\varphi}-\sin \varphi \partial_{\vartheta}+\frac{\cos \varphi}{\sin \vartheta} \partial_{\psi}, \\
\xi_{2}=\sin \varphi \cot \vartheta \partial_{\varphi}-\cos \varphi \partial_{\vartheta}-\frac{\sin \varphi}{\sin \vartheta} \partial_{\psi} \\
\xi_{3}=\partial_{\varphi}
\end{array}\right.
$$

where $\left[\xi_{i}, \xi_{j}\right]=-\varepsilon_{i j k} \xi_{k}$ and $\nabla_{i} \xi_{j}+\nabla_{j} \xi_{i}=0$.

PEdERSEN-POON METRICS

General diagonal Kähler and $R=0$ (Weyl anti-self-dual) metric with $S U(2)$ isometry.
Pedersen-Poon (1990)

$$
\begin{aligned}
& \mathrm{d} \ell^{2}=\Omega_{1} \Omega_{2} \Omega_{3} \mathrm{~d} T^{2}+\frac{\Omega_{2} \Omega_{3}}{\Omega_{1}} \sigma_{1}^{2}+\frac{\Omega_{1} \Omega_{3}}{\Omega_{2}} \sigma_{2}^{2}+\frac{\Omega_{1} \Omega_{2}}{\Omega_{3}} \sigma_{3}^{2}, \\
& \Omega_{1}^{\prime}=\Omega_{2} \Omega_{3}-\alpha \Omega_{1}, \quad \Omega_{2}^{\prime}=\Omega_{1} \Omega_{3}-\alpha \Omega_{2}, \quad \Omega_{3}^{\prime}=\Omega_{1} \Omega_{2}, \quad f^{\prime}=\frac{\mathrm{d} f}{\mathrm{~d} T},
\end{aligned}
$$

where α is a constant. For $\alpha=0-$ RSD Belinski-Gibbons-Page-Pope metric (1979).

Their LeBrun frame

Tod (1995)

$$
\begin{aligned}
& z=n_{3} \Omega_{3}, \quad x=e^{\alpha T} n_{2} \Omega_{2}, \quad y=e^{\alpha T} n_{1} \Omega_{1}, \quad e^{\Psi}=e^{-2 \alpha T}, \quad n_{i}=\left(s_{\vartheta} c_{\psi}, s_{\vartheta} s_{\psi}, c_{\vartheta}\right), \\
& V=\frac{\Omega_{2} \Omega_{3}}{\Omega_{1}} n_{1}^{2}+\ldots, \quad A_{i} \mathrm{~d} x^{i}=V^{-1}\left(\left(\frac{\Omega_{1} \Omega_{3}}{\Omega_{2}}-\frac{\Omega_{2} \Omega_{3}}{\Omega_{1}}\right) s_{\vartheta} s_{\psi} c_{\psi} \mathrm{d} \vartheta+\frac{\Omega_{1} \Omega_{2}}{\Omega_{3}} c_{\vartheta} \mathrm{d} \psi\right) .
\end{aligned}
$$

Application in 11d SUGRA

The axisymmetric solution

$$
\Omega_{1}=\Omega_{2}=\frac{2 \alpha w}{w^{2}-1}, \quad \Omega_{3}=\frac{2 \alpha w^{2}}{w^{2}-1}, \quad w=\alpha^{-1} e^{-\alpha T} .
$$

The line charge density is regular if:

$$
\exists t_{1}: \quad \Omega_{1}\left(t_{1}\right)=0, \quad \Omega_{3}\left(t_{1}\right)=2 \alpha, \quad \alpha \in \mathbb{N}^{*} .
$$

The generic non- $U(1)$ solution

$$
\begin{gathered}
\Omega_{1}=\alpha w \cosh G, \quad \Omega_{2}=\alpha w \sinh G, \quad \Omega_{3}=-\alpha w \frac{\mathrm{~d} G}{\mathrm{~d} w}, \\
\text { where : } \quad \frac{\mathrm{d}}{\mathrm{~d} w}\left(w \frac{\mathrm{~d} G}{\mathrm{~d} w}\right)=\frac{w}{2} \sinh (2 G) .
\end{gathered}
$$

(1) It is regular at $z=0$, i.e. $\vartheta=\pi / 2$ or $\Omega_{3}\left(w_{*}\right)=0$.
(2) There is a regular puncture at $w=0 \& \vartheta=0$ if: $\quad N_{5}=\frac{\alpha \zeta}{2}, \quad 0 \leqslant \zeta<1$

Regularity demands in agreement: On the non- $U(1)$ solution and on the line charge density.

PLAN OF THE TALK

(1) GRAVITY dUALS OF $\mathcal{N}=2$ SCFTS

2 The continual Toda equation

3 Construction of a non- U (1) SOLUTION
(4) EuCLIDEAN hOLOGRAPHY

(5) DISCUSSION \& OUTLOOK

PrZANOWSKI-TOD METRICS

W(A)SD and Einstein metrics with a symmetry - Przanowski (1991) - Tod (1997).
Conformal rescaling of LeBrun metrics:

$$
\mathrm{d} \ell_{\mathrm{PT}}^{2}=\frac{1}{z^{2}} \mathrm{~d} \ell_{\mathrm{LeBrun}}^{2}=\frac{1}{z^{2}}\left(V(\mathrm{~d} \varphi+A)^{2}+V^{-1}\left(\mathrm{~d} z^{2}+\mathrm{e}^{\Psi}\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right)\right)\right),
$$

where the upliftability condition reads:

$$
2 k^{2} V=2-z \partial_{z} \Psi,
$$

with

$$
R_{\mu \nu}=-3 k^{2} g_{\mu \nu}, \quad \widehat{W}_{2}=\star_{4} \widehat{W}_{2}, \quad \widehat{W}_{2}=\mathcal{R}_{2}+k^{2} e \wedge e .
$$

Additional $U(1)$ isometry - electrostatic potential - Calderbank-Pedersen (2001)

$$
F=F(\rho, \eta)=\sqrt{\rho} \partial_{\rho} \Phi: \quad \rho^{2}\left(F_{\rho \rho}+F_{\mathfrak{\eta} \eta}\right)=\frac{3}{4} F .
$$

For example $\sqrt{\rho} F=\sqrt{\rho^{2}+\eta^{2}}-k^{2}$ yields H_{4}.

PRZANOWSKI-TOD AND HOLOGRAPHY

Stationary solutions admit (locally at least) two commuting Killing isometries:

$$
\mathrm{d} \ell^{2}=\frac{1}{z^{2}}\left(V(\mathrm{~d} \varphi+A)^{2}+V^{-1}\left(\mathrm{~d} z^{2}+\mathrm{e}^{\Psi}\left(\mathrm{d} r^{2}+r^{2} \mathrm{~d} \beta^{2}\right)\right)\right), \quad(V, A, \Psi)=\text { depend on }(r, z) .
$$

Double pole at $z=0$ - Potential conformal boundary - Fefferman-Graham (FG) expansion near $z=0$.

The Gaussian normal coordinates (R, ζ) centred at $z=0$:

$$
z(R, \zeta)=\frac{1}{R}\left(1+\frac{a(\zeta)}{R}+\frac{b(\zeta)}{R^{2}}+\frac{c(\zeta)}{R^{3}}\right)+\ldots, \quad \rho(R, \zeta)=\zeta+\frac{e(\zeta)}{R}+\frac{f(\zeta)}{R^{2}}++\frac{g(\zeta)}{R^{3}}+\ldots
$$

Recasting the metric in the FG gauge:

$$
\begin{aligned}
& \mathrm{d} s^{2}=\left(\theta^{R}\right)^{2}+\delta_{\mu \nu} \theta^{\mu} \theta^{v}, \quad \theta^{R}=N \frac{\mathrm{~d} R}{k R}, \quad \theta^{\mu}=N^{\mu} \mathrm{d} R+\tilde{\theta}^{\mu}, \quad \mu=(\zeta, \varphi, \beta), \\
& N=1, \quad N^{\zeta}=0, \quad A=A_{\varphi}(z, \rho) \mathrm{d} \varphi,
\end{aligned}
$$

yields $a, b, c, e \ldots$, regularity conditions and validity constraints for the FG gauge at $z=0$:

$$
V=1 / k^{2}, \quad z \partial_{z} \Psi=0, \quad \ldots, \quad \text { and } \quad \partial_{z}\left(V^{2} \mathrm{e}^{\Psi}\right)=0, \quad \partial_{z} A_{\varphi}=0
$$

PRZANOWSKI-TOD AND HOLOGRAPHY

The boundary is odd-dimensional and there are no anomalies:

$$
g=\delta_{\mu v} \frac{\tilde{\theta}^{\mu}}{k R} \frac{\tilde{\theta}^{v}}{k R}=g_{(0)}+\frac{1}{k k R^{2}(1)}++\frac{1}{k^{2} R^{2}} g_{(2)}+\frac{1}{k^{3} R^{3}} g_{(3)}+\ldots, \quad g_{(0)}=1 /\left.k^{2} R^{2} \mathrm{~d} s^{2}\right|_{\partial \mathcal{M}}
$$

Boundary data:

- Boundary metric:

$$
g_{(0)}=\left(\mathrm{d} \chi+a_{\beta} \mathrm{d} \beta\right)^{2}+\frac{e^{\psi}}{k^{4}}\left(\mathrm{~d} r^{2}+r^{2} \mathrm{~d} \beta^{2}\right), \quad a_{\beta}:=\left.A_{\beta}(r, z)\right|_{z=0}, \quad \psi:=\left.\Psi(r, z)\right|_{z=0}
$$

- Stress-energy momentum tensor:

$$
T_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\frac{3 k}{16 \pi G_{N}} g_{(3)}, \quad g_{(3)}=\# k^{3}\left(-2\left(\mathrm{~d} \chi+a_{\beta} \mathrm{d} \beta\right)^{2}+\frac{e^{\psi}}{k^{4}}\left(\mathrm{~d} r^{2}+r^{2} \mathrm{~d} \beta^{2}\right)\right)
$$

It is traceless and divergenceless; provided $\#=$ constant $=-16 M / k^{2}$.

- Integrability condition: Leigh, Petkou 07; de Haro 08; Mansi et al 08; Miskovic-Olea 09

$$
\left(\pm C_{\mu \nu}-8 \pi G_{N} k^{2} T_{\mu v}\right) \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=0
$$

Quaternionic Taub-NUT

The metric reads:

$$
\begin{aligned}
\mathrm{d} s_{\text {bulk }}^{2} & =\frac{\mathrm{d} \xi^{2}}{V(\xi)}+V(\xi)\left(\mathrm{d} \varphi+4 n \sin ^{2} \vartheta / 2 \mathrm{~d} \beta\right)^{2}+\left(\xi^{2}-n^{2}\right)\left(\mathrm{d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \beta^{2}\right) \\
V(\xi) & =\frac{\xi-n}{\xi+n}\left(1+k^{2}(\xi-n)(\xi+3 n)\right)
\end{aligned}
$$

In Przanowski-Tod coordinates:

$$
\begin{aligned}
& z=\frac{1}{\xi-n}, \quad r=\cot \vartheta / 2, \quad A=4 n \sin ^{2} \vartheta / 2 \mathrm{~d} \beta, \\
& V=\frac{1+2 n z}{k^{2}+4 n k^{2} z+z^{2}}, \quad \mathrm{e}^{\Psi}=4 \frac{k^{2}+4 n k^{2} z+z^{2}}{\left(1+r^{2}\right)^{2}} .
\end{aligned}
$$

The boundary data are built from:

$$
\mathrm{e}^{\psi}=\frac{4 k^{2}}{\left(1+r^{2}\right)^{2}}, \quad a_{\beta}=\frac{4 n}{r^{2}+1}, \quad M=n\left(1-4 k^{2} n^{2}\right),
$$

the latter ensures the anti-self-duality and the regularity; nut at $\xi=n-$ locally R^{4} in polar coordinates.

8D/7D HOLOGRAPHY

Self-duality in 8 Euclidean dimensions - octonions $f_{a b}{ }^{c d}$.
(1) Riemann two-form: $\mathcal{R}_{2} \in \mathbf{2 8}$ of $\mathrm{SO}(8)$.
(2) $\mathbf{2 8}=\mathbf{2 1} \oplus \mathbf{7}$ under $\operatorname{Spin}(7) \subset \operatorname{SO}(8)$.
(3) Self-duality and anti-self-duality corresponds to $P_{\mathbf{2 1}} \mathcal{R}_{2}=0$ or $P_{7} \mathcal{R}_{2}=0$, where:
B. De Wit-H. Nicolai (1984)

$$
\begin{aligned}
& P_{7}=\frac{1}{4}\left(\delta_{a b}^{c d}-\frac{1}{2} f_{a b}^{c d}\right), \quad P_{\mathbf{2 1}}=\frac{3}{4}\left(\delta_{a b}^{c d}+\frac{1}{6} f_{a b}^{c d}\right), \\
& P_{\mathbf{7}}^{2}=P_{\mathbf{7}}, \quad P_{\mathbf{2 1}}^{2}=P_{\mathbf{2 1}}, \quad P_{\mathbf{7}}+P_{\mathbf{2 1}}=\delta_{a b}{ }^{c d}, \quad P_{\mathbf{7}} P_{\mathbf{2 1}}=P_{\mathbf{2 1}} P_{\mathbf{7}}=0 .
\end{aligned}
$$

(4) In 8-dim the Riemann tensor splits to $\mathbf{3 3 6}=\mathbf{3 0 0} \oplus \mathbf{3 5} \oplus \mathbf{1}$ as:

$$
\mathcal{S}_{21}=P_{21} \mathcal{R}_{2}=W^{168} \phi_{21}+s^{1} \phi_{21}+W^{105} \chi_{7}, \quad \mathcal{A}_{7}=P_{7} \mathcal{R}_{2}=W^{27} \chi_{7}+s^{1} \chi_{7}+S^{35} \phi_{21} .
$$

(3) "Quaternionic" spaces:

$$
\begin{cases}S^{35}=0, s^{1} \neq 0, & \text { Einstein } \\ W^{27}=0, & \text { Weyl self-dual }\end{cases}
$$

(c) Seven-dimensional boundary:

$$
T_{\mu \nu}:=\frac{\delta S_{7-\operatorname{dim}}^{\mathrm{CS}}}{\delta g^{\mu \nu}}
$$

integrability and generalized filling-in problem.

PLAN OF THE TALK

(1) Gravity duals of $\mathcal{N}=2$ SCFTs

2 The continual Toda equation
(3) Construction of a non- U (1) SOLUTION
(4) EuCLIDEAN HOLOGRAPHY
(3) DISCUSSION \& OUTLOOK

Discussion \& OUTLook

Use of the Toda potential for studying:

- 11d supergravity solutions, which are regular and have no smearing.
- Toda frame thought Kähler metrics with $S U(2)$ isometry and $R=0$.
- Emergence of an extra $U(1)$ symmetry - in agreement with electrostatic description.
- Quaternionic 4d-spaces with a symmetry and Euclidean holography.
- Going beyond the integrability condition.

Extensions to $8 \mathrm{~d} / 7 \mathrm{~d}$ holography.

Appendix: $\mathcal{N}=2$ SCFTs

A class of $4 \mathrm{~d} \mathcal{N}=2$ SCFTs can be viewed:
As generalised quivers (elementary fields and strongly coupled field theories as building blocks).

Gaiotto (2009)

By taking the IR limit of N M5 branes wrapping a two dimensional Riemann surface Σ_{2}.

Maldacena-Nũnéz (2001)

- The geometry contains $A d S_{5}$ and S^{4} fibered over Σ_{2}.
- The fibration involves a twist preserving four dimensional $\mathcal{N}=2$ SUSY.
- Σ_{2} may be sphere or torus or higher genus surface...
- Σ_{2} has constant curvature and it is a quotient of hyperbolic space.
- Additional non-compact branes may intersect Σ_{2} at points-punctures; z_{c}.

Maldacena-Nũnéz geometry

- M5 theory $(N \gg 1)$ on Σ_{2} flowing from UV to IR.
- At UV the geometry $\simeq A d S_{7} \times S^{4} \supseteq \mathbb{R}^{4} \times \Sigma_{2}, S^{4}$ wrapped on $\Sigma_{2} \Longrightarrow 8$ supercharges.

Appendix: COMMENTS ON ELECTROSTATICS

Line charge density - related to the M5 sources
Gaiotto-Maldacena, Reid-Edwards-Stefanski (2011), Donos-Simon (2011) \& Aharony-Berdichevsky-Berkooz (2012)

- Extra $U(1)$ isometry endows a smearing process with the typical validity limitations.
- Regularity of spacetime imposes constraints on $\lambda(\eta)$, arising from 4-flux quantisation on punctures.
- $\lambda(\eta)$ is continuous and piecewise segment, i.e. $a_{n} \eta+q_{n}$, where $a_{n} \in \mathbb{Z}$.
- Kinks occur at integer values of η.
- $\lambda(0)=0$ and $a_{n-1}-a_{n}=k_{n} \in \mathbb{Z}_{+}$
- Metric singularity around that point $\simeq A d S_{5} \times S^{2} \times \mathbb{R}^{4} / \mathbb{Z}_{k_{n}}$

Region of validity: $\rho_{\mathrm{sm}} \ll \rho \ll \rho_{U(1)}$. An exception is the Maldacena-Núñez solution.

A class of $4 \mathrm{~d} \mathcal{N}=2$ SCFTs can be viewed as generalised quiver gauge theories
Gaiotto (2009)

- $\exists S U\left(\lambda_{n}\right)$ gauge group $\forall \lambda_{n}=\lambda(\eta)_{\eta=n}: \lambda_{n} \leqslant \lambda_{n+1} \leqslant N \& k_{n}:=2 \lambda_{n}-\lambda_{n-1}-\lambda_{n+1} \geqslant 0$.
- \forall Kink $_{\eta=\mathrm{n}}, \exists k_{n}=a_{n-1}-a_{n}$ fundamental hypermultiplets charged under the $S U\left(\lambda_{n}\right)$.
- In total, this is a quiver with gauge group $\prod_{n} S U(n)$ described at strong coupling by supergravity.

Appendix: Atiyah-Hitchin and 11d SUGRA

A more complicated solution - K. Sfetsos, P.M. Petropoulos and K.S. (2013)
(1) Riemann self-duality on foliations of Bianchi-IX.
(2) Lagrange or Darboux-Halphen $1^{\text {st }}$-order differential systems.

$$
\Omega_{1}^{\prime}=\Omega_{2} \Omega_{3}-\lambda \Omega_{1}\left(\Omega_{2}+\Omega_{3}\right), \quad \lambda=0,1 .
$$

(3) Darboux-Halphen possesses an $\operatorname{SL}(2, \mathbb{R})$ covariance.
(9) Translational or Rotational Killing vectors.
(6) Darboux-Halphen - rotational Killing vectors - continual Toda equation - LeBrun $V^{-1}=\partial_{z} \Psi$.
(6) Regularity of the 11 d metric yields irregular 4 d metrics - Kretschmann scalar $\sim\left(\partial_{z} \Psi\right)^{-6}$.
(O Halphen (Atiyah-Hitchin) is a non-singular solution of the Darboux-Halphen $\operatorname{SL}(2, \mathbb{R})$ family.
(8) We satisfy the b.c. for 11 d regularity by transforming the Atiyah-Hitchin under this $S L(2, \mathbb{R})$.
(2) There is no axisymmetric limit - electrostatics description is inapplicable.

