Toda equation, $\mathcal{N} = 2$ SCFTs and Euclidean holography

K. SIAMPOS, Albert Einstein Center for Fundamental Physics, University of Bern

based on works with J. Gath, A. Mukhopadhyay, A. Petkou, P. M. Petropoulos and K. Sfetsos

Institute of Theoretical Physics, Aristotle University of Thessaloniki, 17 February, 2015

Continual Toda equation as a toolkit for studying:

Supergravity solutions:

- **11** 11 SUGRA solutions with $SO(2,4) \times SO(3) \times U(1)_R$ isometry.
- 2 \nexists additional U(1) symmetry No smearing.
- S Explore the 11d landscape of qualitatively different solutions qualitatively different SCFTs.

Euclidean holography:

- **1** 4d WSD & Einstein metrics with a symmetry, i.e. Przanowski–Tod & Calderbank–Pedersen.
- 2 Fefferman–Graham expansion and boundary data.

PLAN OF THE TALK

1 Gravity duals of $\mathcal{N} = 2$ SCFTs

2 THE CONTINUAL TODA EQUATION

3 CONSTRUCTION OF A NON-U(1) SOLUTION

4 EUCLIDEAN HOLOGRAPHY

5 DISCUSSION & OUTLOOK

Gravity duals of $\mathcal{N}=2$ SCFTs

General M-theory solution which preserves four dimensional $\mathcal{N} = 2$ superconformal symmetry, with $SO(2,4) \times SO(3) \times U(1)_R$ isometry, was constructed in Lin–Lunin–Maldacena (2004):

$$\begin{split} \mathrm{d}s_{11}^2 &= \kappa_{11}^{\frac{2}{3}} \mathrm{e}^{2\lambda} \left(4 \, \mathrm{d}s_{\mathrm{AdS}_5}^2 + z^2 \mathrm{e}^{-6\lambda} \mathrm{d}\Omega_2^2 + \frac{4}{1 - z \, \partial_z \Psi} \, (\mathrm{d}\varphi + \omega)^2 - \frac{\partial_z \Psi}{z} \, \gamma_{ij} \mathrm{d}x^i \mathrm{d}x^j \right) \,, \\ \omega &= \omega_x \mathrm{d}x + \omega_y \mathrm{d}y \,, \quad \omega_x = \frac{1}{2} \, \partial_y \Psi \,, \quad \omega_y = -\frac{1}{2} \, \partial_x \Psi \,, \\ \gamma_{ij} \mathrm{d}x^i \mathrm{d}x^j &= \mathrm{d}z^2 + \mathrm{e}^{\Psi} (\mathrm{d}x^2 + \mathrm{d}y^2) \,, \quad \mathrm{e}^{-6\lambda} = -\frac{\partial_z \Psi}{z(1 - z \, \partial_z \Psi)} \,, \quad G_4 = \mathrm{d}C_3 = \kappa_{11} \, F_2 \wedge \mathrm{d}\Omega_2 \,, \\ F_2 &= 2(\mathrm{d}\varphi + \omega) \wedge \mathrm{d} \left(z^3 \mathrm{e}^{-6\lambda} \right) + 2z \left(1 - z^2 \, \mathrm{e}^{-6\lambda} \right) \mathrm{d}\omega - \partial_z \mathrm{e}^{\Psi} \mathrm{d}x \wedge \mathrm{d}y \,, \quad \kappa_{11} = \frac{\pi \ell_p^3}{2} \,, \end{split}$$

where $\Psi(x, y, z)$ satisfies the continual Toda equation:

$$\left(\partial_x^2 + \partial_y^2\right)\Psi + \partial_z^2 e^{\Psi} = 0$$

where $z \in [0, z_c]$ and $z_c : e^{\Psi} \sim z_c - z$, $\partial_z \Psi \to \infty$. Regularity of the metric when S^2 shrinks to zero size, requires

z = 0: $e^{\Psi} = \text{finite} \neq 0$, $\partial_z \Psi = 0$, $\partial_z \Psi/z = \text{finite} \neq 0$.

PLAN OF THE TALK

(1) Gravity duals of $\mathcal{N} = 2$ SCFTs

2 THE CONTINUAL TODA EQUATION

3 CONSTRUCTION OF A NON-U(1) SOLUTION

4 EUCLIDEAN HOLOGRAPHY

5 DISCUSSION & OUTLOOK

THE CONTINUAL TODA EQUATION

The molecule of Toda

$$\begin{split} H &= \frac{1}{2} p_z^2 + \sum_{i=1}^{z-1} \left(\frac{1}{2} p_i^2 + e^{q_i - q_{i+1}} \right) \Longrightarrow \ddot{\Psi}_i + \sum_{j=1}^{z-1} K_{ij} e^{\Psi_j} = 0 \,, \\ \Psi_i(T) &= q_i - q_{i+1} \,, \qquad K_{i|i} = 2 \,, \qquad K_{i|i+1} = K_{i+1|i} = -1 \,, \quad i = 1, 2, \dots, z-1 \,, \quad z \in \mathbb{N} \,. \end{split}$$

where $K_{i|i}$ is the Cartan matrix of the classical Lie algebra A_{z-1} : SU(z).

The Toda field theory

$$\mathcal{L} = \frac{1}{2} \sum_{i,j=1}^{z-1} K_{i|j}^{-1} \partial \Psi_i \bar{\partial} \Psi_j + \sum_{i=1}^{z-1} e^{\Psi_i} \Longrightarrow \partial \bar{\partial} \Psi_i = \sum_{j=1}^{z-1} K_{i|j} e^{\Psi_j}, \quad q = \frac{1}{2} (x+iy), \quad \partial = \frac{\partial}{\partial q} = \partial_x - i\partial_y,$$

The infinite limit – Saveliev (1990)

$$z \to \infty$$
, $K(z, z') = -\delta''(z - z') \implies \left| \partial \bar{\partial} \Psi + \partial_z^2 e^{\Psi} = 0 \right|$

METHODS FOR SOLVING TODA

Solutions for special cases

$$e^{\Psi} = c_3 \frac{|\partial f|^2}{(1 - c_3 |f|^2)^2} \left(-z^2 + c_1 z + c_2 \right), \qquad f = f(q),$$

Maldacena–Núñez (2000): $e^{\Psi} = 4 \frac{N^2 - z^2}{(1 - r^2)^2}, \qquad r^2 = x^2 + y^2,$
 $0 \le z \le N, \qquad 0 \le r \le 1.$

2 Extra U(1) symmetry:

 $\mathrm{AdS}_7 \times S^4 \colon \qquad e^{\Psi} = \mathrm{coth}^2 \, \zeta \,, \qquad r = \mathrm{sinh}^2 \, \zeta \, \mathrm{sin}^2 \, \vartheta \,, \qquad z = \mathrm{cosh}^2 \, \zeta \, \mathrm{cos}^2 \, \vartheta \,,$

and the Maldacena-Núñez solution.

EXTRA U(1) – ELECTROSTATICS

Extra U(1) symmetry – Ward's transformation: Ward (1990)

 $(r, z, \Psi) \mapsto \overline{(\rho, \eta, \Phi)}: \qquad \ln r = \partial_{\eta} \Phi, \quad z = \rho \partial_{\rho} \Phi, \quad \rho = r e^{\Psi(r, z)/2},$

where the Toda equation is "replaced" by a Poisson equation

$$\frac{1}{r}\partial_r \left(r\partial_r \Psi\right) + \partial_z^2 e^{\Psi} = \delta(M_5) \Longrightarrow \frac{1}{\rho}\partial_\rho \left(\rho\partial_\rho \Phi\right) + \partial_\eta^2 \Phi = \frac{\lambda(\eta)\delta(\rho)}{\rho}$$

Boundary condition at z = 0: Infinite conducting plane with a charge density $\lambda(\eta)$

$$\begin{split} \Phi(\rho,\eta) &= -\frac{1}{2} \int_0^\infty d\eta_1 \lambda(\eta_1) G(\rho,\eta;\eta_1) \,, \qquad \lambda(\eta) = z(\rho=0,\eta) \,, \\ G(\rho,\eta;\eta_1) &= \frac{1}{\sqrt{\rho^2 + (\eta-\eta_1)^2}} - \frac{1}{\sqrt{\rho^2 + (\eta+\eta_1)^2}} \,, \quad G(\rho,\eta,\eta_1) \big|_{\eta=0} = 0 \,. \end{split}$$

Maldacena-Núñez

The Toda potential

$$e^{\Psi} = 4 \frac{N^2 - z^2}{(1 - r^2)^2}, \quad z \in [0, N], \quad r \in [0, 1].$$

Ward's transformation $(r, z, \Psi) \mapsto (\rho, \eta, \Phi)$

$$\rho = \frac{2r\sqrt{N^2 - z^2}}{1 - r^2} \ge 0, \quad \eta = \frac{1 + r^2}{1 - r^2} z \ge 0, \quad \Phi = z - N \tanh^{-1} \frac{z}{N} + \frac{1 + r^2}{1 - r^2} z \ln r.$$

Its charge density at $\rho = 0$

$$\lambda(\eta) = z(\rho = 0, \eta) = \begin{cases} \eta, & 0 \leq \eta \leq N, \\ N, & \eta \geq N. \end{cases}$$

$AdS_7 \times S^4$

The Toda frame

$$e^{\Psi} = \coth^2 \zeta$$
, $r = \sinh^2 \zeta \sin^2 \vartheta$, $z = \cosh^2 \zeta \cos^2 \vartheta$.

Ward's transformation $(r, z, \Psi) \mapsto (\rho, \eta, \Phi)$

$$\rho = \frac{1}{2} \sinh 2\zeta \sin \vartheta \,, \quad \eta = \frac{1}{2} \cosh 2\zeta \cos \vartheta \,, \quad \Phi = \frac{1}{2} \left(\cos \vartheta \left(1 + \cosh 2\zeta \ln r \right) + \ln \tan \frac{\vartheta}{2} \right) \,.$$

Its charge density at $\rho = 0$

$$\lambda(\eta) = z(\rho = 0, \eta) = \begin{cases} 2\eta, & 0 \leq \eta \leq \frac{1}{2}, \\ \eta + \frac{1}{2}, & \eta \geq \frac{1}{2}. \end{cases}$$

ELECTROSTATICS AND BEYOND

Charge distributions with singularities - irregular punctures

Pathologies: ρ -small – smearing and ρ -large – conical singularities: $\mathbb{R}^4/\mathbb{Z}_k$.

Goal: Find Toda potentials which are not separable and depend on x, y, z.

Idea: Toda equation appears in Euclidean 4d metrics, i.e. RSD, Kählher and R=0, WSD and Einstein.

ELECTROSTATICS AND BEYOND

Genuine solutions known for four-dimensional instantons with only SU(2) isometry.

Riemann self-dual by Atiyah–Hitchin (1985). Kähler and R = 0 (WASD) by Pedersen–Poon (1990). Weyl self-dual and Einstein by Tod (1994) & Hitchin (1995).

A toolkit for regular solutions in 11d SUGRA with only $SO(2,4) \times SO(3) \times U(1)_R$ isometry:

- Singular "Atiyah–Hitchin" metrics K. Sfetsos, P.M. Petropoulos and K.S. (2013).
- Pedersen–Poon metrics K. Sfetsos, P.M. Petropoulos and K.S. (2014).

PLAN OF THE TALK

1 Gravity duals of $\mathcal{N} = 2$ SCFTs

2 THE CONTINUAL TODA EQUATION

3 CONSTRUCTION OF A NON-U(1) SOLUTION

EUCLIDEAN HOLOGRAPHY

5 DISCUSSION & OUTLOOK

LEBRUN METRICS

Kähler metric with symmetry and R = 0 – WASD (canonical orientation)

LeBrun (1991)

$$d\ell_{\text{LeBrun}}^2 = V(d\phi + A)^2 + V^{-1}(dz^2 + e^{\Psi}(dx^2 + dy^2)),$$

where the R = 0 and Kähler conditions translate to:

$$\begin{cases} (\partial_x^2 + \partial_y^2) \Psi + \partial_z^2 (e^{\Psi}) = e^{\Psi} \nabla^2 \Psi = 0, \\ (\partial_x^2 + \partial_y^2) V^{-1} + \partial_z^2 (V^{-1} e^{\Psi}) = 0, \\ A = \partial_x V^{-1} dy \wedge dz + \partial_y V^{-1} dz \wedge dx + \partial_z (V^{-1} e^{\Psi}) dx \wedge dy, \end{cases}$$

with Kähler form

$$J = (\mathrm{d}\varphi + A) \wedge \mathrm{d}z - V^{-1} \,\mathrm{e}^{\Psi} \mathrm{d}x \wedge \mathrm{d}y \,, \quad \mathrm{d}J = 0 \,.$$

Solutions usually involve electrostatics, i.e. two commuting isometries.

Going beyond using solutions with no commuting isometries.

Foliations with SU(2) isometry

A four dimensional metric:

$$\begin{split} \mathrm{d}\ell^2 &= \Omega_1 \Omega_2 \Omega_3 \, \mathrm{d}T^2 + \frac{\Omega_2 \Omega_3}{\Omega_1} \, \sigma_1^2 + \frac{\Omega_1 \Omega_3}{\Omega_2} \, \sigma_2^2 + \frac{\Omega_1 \Omega_2}{\Omega_3} \, \sigma_3^2 \,, \\ \sigma_1 &+ i\sigma_2 = -\mathrm{e}^{i\,\psi} \left(i\,\mathrm{d}\vartheta + \sin\vartheta\,\mathrm{d}\varphi \right) \,, \quad \sigma_3 &= \mathrm{d}\psi + \cos\vartheta\,\mathrm{d}\varphi \,, \quad \mathrm{d}\sigma_i = \frac{1}{2}\,\varepsilon_{ijk}\sigma_j \wedge \sigma_k \,, \\ \psi &\in \left[-2\pi, 2\pi \right] \,, \qquad \vartheta \in \left[0, \pi \right] \,, \qquad \varphi \in \left[0, 2\pi \right] \,. \end{split}$$

The metric is invariant under the action of the Killing (right-invariant) fields

$$\begin{cases} \xi_1 = -\cos\varphi\cot\vartheta\,\partial_\varphi - \sin\varphi\,\partial_\vartheta + \frac{\cos\varphi}{\sin\vartheta}\,\partial_\psi,\\ \xi_2 = \sin\varphi\cot\vartheta\,\partial_\varphi - \cos\varphi\,\partial_\vartheta - \frac{\sin\varphi}{\sin\vartheta}\,\partial_\psi,\\ \xi_3 = \partial_\varphi \end{cases}$$

where $[\xi_i, \xi_j] = -\varepsilon_{ijk}\xi_k$ and $\nabla_i\xi_j + \nabla_j\xi_i = 0$.

PEDERSEN-POON METRICS

General diagonal Kähler and R = 0 (Weyl anti-self-dual) metric with SU(2) isometry.

Pedersen-Poon (1990)

$$\begin{split} \mathrm{d}\ell^2 &= \Omega_1 \Omega_2 \Omega_3 \, \mathrm{d}T^2 + \frac{\Omega_2 \Omega_3}{\Omega_1} \sigma_1^2 + \frac{\Omega_1 \Omega_3}{\Omega_2} \sigma_2^2 + \frac{\Omega_1 \Omega_2}{\Omega_3} \sigma_3^2 \,, \\ \Omega_1' &= \Omega_2 \Omega_3 - \alpha \,\Omega_1 \,, \quad \Omega_2' = \Omega_1 \Omega_3 - \alpha \,\Omega_2 \,, \quad \Omega_3' = \Omega_1 \Omega_2 \,, \quad f' = \frac{\mathrm{d}f}{\mathrm{d}T} \,. \end{split}$$

where α is a constant. For $\alpha = 0 - RSD$ Belinski–Gibbons–Page–Pope metric (1979).

Their LeBrun frame

Tod (1995)

$$z = n_3 \Omega_3, \quad x = e^{\alpha T} n_2 \Omega_2, \quad y = e^{\alpha T} n_1 \Omega_1, \quad e^{\Psi} = e^{-2\alpha T}, \quad n_i = (s_{\vartheta} c_{\psi}, s_{\vartheta} s_{\psi}, c_{\vartheta}),$$
$$V = \frac{\Omega_2 \Omega_3}{\Omega_1} n_1^2 + \dots, \quad A_i \, \mathrm{d} x^i = V^{-1} \left(\left(\frac{\Omega_1 \Omega_3}{\Omega_2} - \frac{\Omega_2 \Omega_3}{\Omega_1} \right) s_{\vartheta} s_{\psi} c_{\psi} \, \mathrm{d} \vartheta + \frac{\Omega_1 \Omega_2}{\Omega_3} c_{\vartheta} \, \mathrm{d} \psi \right)$$

APPLICATION IN 11D SUGRA

The axisymmetric solution

$$\Omega_1 = \Omega_2 = \frac{2\alpha w}{w^2 - 1}, \qquad \Omega_3 = \frac{2\alpha w^2}{w^2 - 1}, \qquad w = \alpha^{-1} e^{-\alpha T}.$$

The line charge density is regular if:

 $\exists t_1: \qquad \Omega_1(t_1) = 0, \qquad \Omega_3(t_1) = 2\alpha, \qquad \alpha \in \mathbb{N}^* \ .$

The generic non-U(1) solution

$$\Omega_1 = \alpha w \cosh G, \quad \Omega_2 = \alpha w \sinh G, \quad \Omega_3 = -\alpha w \frac{\mathrm{d}G}{\mathrm{d}w},$$

where : $\frac{\mathrm{d}}{\mathrm{d}w} \left(w \frac{\mathrm{d}G}{\mathrm{d}w} \right) = \frac{w}{2} \sinh(2G).$

1 It is regular at z = 0, i.e. $\vartheta = \pi/2$ or $\Omega_3(w_*) = 0$.

3 There is a regular puncture at w = 0 & $\vartheta = 0$ if: $N_5 = \frac{\alpha \zeta}{2}$, $0 \le \zeta < 1$

Regularity demands in agreement: On the non-U(1) solution and on the line charge density.

K.Siampos (Bern U.)

Toda equation and applications

PLAN OF THE TALK

(1) Gravity duals of $\mathcal{N} = 2$ SCFTs

2 The continual Toda equation

3 CONSTRUCTION OF A NON-U(1) SOLUTION

EUCLIDEAN HOLOGRAPHY

5 DISCUSSION & OUTLOOK

PRZANOWSKI-TOD METRICS

W(A)SD and Einstein metrics with a symmetry - Przanowski (1991) - Tod (1997).

Conformal rescaling of LeBrun metrics:

$$\mathrm{d}\ell_{\mathrm{PT}}^2 = \frac{1}{z^2} \, \mathrm{d}\ell_{\mathrm{LeBrun}}^2 = \frac{1}{z^2} \, \left(V(\mathrm{d}\phi + A)^2 + V^{-1}(\mathrm{d}z^2 + \mathrm{e}^{\Psi}(\mathrm{d}x^2 + \mathrm{d}y^2)) \right) \, ,$$

where the upliftability condition reads:

$$2k^2V=2-z\partial_z\Psi,$$

with

$$R_{\mu\nu} = -3k^2 g_{\mu\nu}, \qquad \widehat{W}_2 = \star_4 \widehat{W}_2, \qquad \widehat{W}_2 = \mathcal{R}_2 + k^2 e \wedge e.$$

Additional U(1) isometry – electrostatic potential – Calderbank–Pedersen (2001)

$$F = F(\rho, \eta) = \sqrt{\rho} \,\partial_{\rho} \Phi : \qquad \rho^2 \left(F_{\rho\rho} + F_{\eta\eta} \right) = \frac{3}{4} F.$$

For example $\sqrt{\rho}F = \sqrt{\rho^2 + \eta^2} - k^2$ yields H_4 .

PRZANOWSKI-TOD AND HOLOGRAPHY

Stationary solutions admit (locally at least) two commuting Killing isometries:

$$d\ell^2 = \frac{1}{z^2} \left(V(d\phi + A)^2 + V^{-1}(dz^2 + e^{\Psi}(dr^2 + r^2 d\beta^2)) \right), \quad (V, A, \Psi) = \text{depend on } (r, z).$$

Double pole at z = 0 – Potential conformal boundary – Fefferman–Graham (FG) expansion near z = 0.

The Gaussian normal coordinates (R, ζ) centred at z = 0:

$$z(R,\zeta) = \frac{1}{R} \left(1 + \frac{a(\zeta)}{R} + \frac{b(\zeta)}{R^2} + \frac{c(\zeta)}{R^3} \right) + \dots, \quad \rho(R,\zeta) = \zeta + \frac{e(\zeta)}{R} + \frac{f(\zeta)}{R^2} + \frac{g(\zeta)}{R^3} + \dots.$$

Recasting the metric in the FG gauge:

$$\begin{split} \mathrm{d}s^2 &= \left(\theta^R\right)^2 + \delta_{\mu\nu}\theta^{\mu}\theta^{\nu} \,, \quad \theta^R = N \, \frac{\mathrm{d}R}{kR} \,, \quad \theta^{\mu} = N^{\mu}\mathrm{d}R + \tilde{\theta}^{\mu} \,, \quad \mu = \left(\zeta, \varphi, \beta\right), \\ N &= 1 \,, \qquad N^{\zeta} = 0 \,, \qquad A = A_{\varphi}(z, \rho)\mathrm{d}\varphi \,, \end{split}$$

yields $a, b, c, e \dots$, regularity conditions and validity constraints for the FG gauge at z = 0:

$$V = 1/k^2$$
, $z\partial_z \Psi = 0$, ..., and $\partial_z \left(V^2 e^{\Psi} \right) = 0$, $\partial_z A_{\varphi} = 0$, ...

PRZANOWSKI-TOD AND HOLOGRAPHY

The boundary is odd-dimensional and there are no anomalies:

$$g = \delta_{\mu\nu} \frac{\tilde{\theta}^{\mu}}{kR} \frac{\tilde{\theta}^{\nu}}{kR} = g_{(0)} + \frac{1}{kR} g_{(1)} + \frac{1}{k^2 R^2} g_{(2)} + \frac{1}{k^3 R^3} g_{(3)} + \dots, \qquad g_{(0)} = \frac{1}{k^2 R^2} ds^2 \Big|_{\partial \mathcal{M}}$$

Boundary data:

Boundary metric:

$$g_{(0)} = (\mathrm{d}\chi + a_{\beta}\mathrm{d}\beta)^{2} + \frac{e^{\psi}}{k^{4}} \left(\mathrm{d}r^{2} + r^{2}\mathrm{d}\beta^{2}\right), \quad a_{\beta} := A_{\beta}(r, z)\big|_{z=0}, \quad \psi := \Psi(r, z)\big|_{z=0}$$

Stress–energy momentum tensor:

$$T_{\mu\nu}dx^{\mu}dx^{\nu} = \frac{3k}{16\pi G_N} g_{(3)} , \quad g_{(3)} = \#k^3 \left(-2(d\chi + a_\beta d\beta)^2 + \frac{e^{\psi}}{k^4} \left(dr^2 + r^2 d\beta^2 \right) \right) .$$

It is traceless and divergenceless; provided $\# = \text{constant} = -\frac{16M}{k^2}$.

Integrability condition: Leigh, Petkou 07; de Haro 08; Mansi et al 08; Miskovic–Olea 09

$$\left(\pm C_{\mu\nu} - 8\pi G_N k^2 T_{\mu\nu}\right) \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = 0$$

K.Siampos (Bern U.)

QUATERNIONIC TAUB-NUT

The metric reads:

$$\begin{split} \mathrm{d}s_{\mathrm{bulk}}^2 &= \frac{\mathrm{d}\xi^2}{V(\xi)} + V(\xi) \left(\mathrm{d}\varphi + 4n\sin^2\vartheta/2\mathrm{d}\beta\right)^2 + (\xi^2 - n^2) \left(\mathrm{d}\vartheta^2 + \sin^2\vartheta\mathrm{d}\beta^2\right)\,,\\ V(\xi) &= \frac{\xi - n}{\xi + n} \left(1 + k^2(\xi - n)(\xi + 3n)\right)\,. \end{split}$$

In Przanowski-Tod coordinates:

$$z = \frac{1}{\xi - n}, \quad r = \cot \vartheta/2, \quad A = 4n \sin^2 \vartheta/2 \, d\beta,$$
$$V = \frac{1 + 2nz}{k^2 + 4nk^2 z + z^2}, \qquad e^{\Psi} = 4 \, \frac{k^2 + 4nk^2 z + z^2}{(1 + r^2)^2}.$$

The boundary data are built from:

$$e^{\psi} = \frac{4k^2}{(1+r^2)^2}$$
, $a_{\beta} = \frac{4n}{r^2+1}$, $M = n(1-4k^2n^2)$,

the latter ensures the anti-self-duality and the regularity; nut at $\xi = n - \text{locally } R^4$ in polar coordinates.

8d/7d holography

Self-duality in 8 Euclidean dimensions – octonions $f_{ab}{}^{cd}$.

- **1** Riemann two-form: $\mathcal{R}_2 \in \mathbf{28}$ of SO(8).
- **2** $\mathbf{28} = \mathbf{21} \oplus \mathbf{7}$ under $Spin(7) \subset SO(8)$.

Self-duality and anti-self-duality corresponds to $P_{21} \mathcal{R}_2 = 0$ or $P_7 \mathcal{R}_2 = 0$, where: B. De Wit–H. Nicolai (1984)

$$P_{7} = \frac{1}{4} \left(\delta_{ab}{}^{cd} - \frac{1}{2} f_{ab}{}^{cd} \right), \quad P_{21} = \frac{3}{4} \left(\delta_{ab}{}^{cd} + \frac{1}{6} f_{ab}{}^{cd} \right),$$
$$P_{7}^{2} = P_{7}, \quad P_{21}^{2} = P_{21}, \quad P_{7} + P_{21} = \delta_{ab}{}^{cd}, \quad P_{7} P_{21} = P_{21} P_{7} = 0$$

In 8-dim the Riemann tensor splits to $336 = 300 \oplus 35 \oplus 1$ as: $S_{21} = P_{21} \mathcal{R}_2 = W^{168} \phi_{21} + s^1 \phi_{21} + W^{105} \chi_7$, $\mathcal{A}_7 = P_7 \mathcal{R}_2 = W^{27} \chi_7 + s^1 \chi_7 + S^{35} \phi_{21}$.

Outernionic" spaces:

$$\begin{cases} S^{35} = 0, \ s^1 \neq 0, & \text{Einstein} \\ W^{27} = 0, & \text{Weyl self-dual} \end{cases}$$

Seven-dimensional boundary:

$$T_{\mu\nu} := \frac{\delta S_{7-\dim}^{\rm CS}}{\delta g^{\mu\nu}} \,,$$

integrability and generalized filling-in problem.

K.Siampos (Bern U.)

PLAN OF THE TALK

(1) Gravity duals of $\mathcal{N} = 2$ SCFTs

2 The continual Toda equation

3 CONSTRUCTION OF A NON-U(1) SOLUTION

4 EUCLIDEAN HOLOGRAPHY

S DISCUSSION & OUTLOOK

DISCUSSION & OUTLOOK

Use of the Toda potential for studying:

- ▶ 11d supergravity solutions, which are regular and have no smearing.
- Toda frame thought Kähler metrics with SU(2) isometry and R = 0.
- Emergence of an extra U(1) symmetry in agreement with electrostatic description.
- Quaternionic 4d-spaces with a symmetry and Euclidean holography.
- Going beyond the integrability condition.

Extensions to 8d/7d holography.

Appendix: $\mathcal{N} = 2$ SCFTs

A class of 4d $\mathcal{N} = 2$ SCFTs can be viewed:

As generalised quivers (elementary fields and strongly coupled field theories as building blocks).

Gaiotto (2009)

By taking the IR limit of N M5 branes wrapping a two dimensional Riemann surface Σ_2 .

Maldacena–Nũnéz (2001)

- The geometry contains AdS_5 and S^4 fibered over Σ_2 .
- The fibration involves a twist preserving four dimensional $\mathcal{N} = 2$ SUSY.
- Σ₂ may be sphere or torus or higher genus surface...
- Σ₂ has constant curvature and it is a quotient of hyperbolic space.
- Additional non-compact branes may intersect Σ_2 at points-punctures; z_c .

Maldacena-Nũnéz geometry

- M5 theory $(N \gg 1)$ on Σ_2 flowing from UV to IR.
- At UV the geometry $\simeq AdS_7 \times S^4 \supseteq \mathbb{R}^4 \times \Sigma_2$, S^4 wrapped on $\Sigma_2 \Longrightarrow 8$ supercharges.

APPENDIX: COMMENTS ON ELECTROSTATICS

Line charge density - related to the M5 sources

Gaiotto–Maldacena, Reid-Edwards–Stefanski (2011), Donos–Simon (2011) & Aharony–Berdichevsky–Berkooz (2012)

- Extra U(1) isometry endows a smearing process with the typical validity limitations.
- Regularity of spacetime imposes constraints on $\lambda(\eta)$, arising from 4-flux quantisation on punctures.
 - $\lambda(\eta)$ is continuous and piecewise segment, i.e. $a_n\eta + q_n$, where $a_n \in \mathbb{Z}$.
 - Kinks occur at integer values of η.
 - $\lambda(0) = 0$ and $a_{n-1} a_n = k_n \in \mathbb{Z}_+$
 - Metric singularity around that point $\simeq AdS_5 \times S^2 \times \mathbb{R}^4 / \mathbb{Z}_{k_n}$

Region of validity: $\rho_{sm} \ll \rho \ll \rho_{U(1)}$. An exception is the Maldacena–Núñez solution.

A class of 4d $\mathcal{N} = 2$ SCFTs can be viewed as generalised quiver gauge theories

Gaiotto (2009)

- $\blacktriangleright \exists SU(\lambda_n) \text{ gauge group } \forall \lambda_n = \lambda(\eta)_{\eta=n} : \lambda_n \leqslant \lambda_{n+1} \leqslant N \& k_n := 2\lambda_n \lambda_{n-1} \lambda_{n+1} \geqslant 0.$
- ► \forall Kink_{η=n}, $\exists k_n = a_{n-1} a_n$ fundamental hypermultiplets charged under the $SU(\lambda_n)$.
- ▶ In total, this is a quiver with gauge group $\prod_{n} SU(n)$ described at strong coupling by supergravity.

APPENDIX: ATIYAH–HITCHIN AND 11D SUGRA

A more complicated solution - K. Sfetsos, P.M. Petropoulos and K.S. (2013)

- Riemann self-duality on foliations of Bianchi-IX.
- 2 Lagrange or Darboux–Halphen 1st-order differential systems.

 $\Omega_1' = \Omega_2 \Omega_3 - \lambda \, \Omega_1 (\Omega_2 + \Omega_3) \,, \qquad \lambda = 0, 1.$

- 3 Darboux–Halphen possesses an $SL(2, \mathbb{R})$ covariance.
- Translational or Rotational Killing vectors.
- Solution Darboux–Halphen rotational Killing vectors continual Toda equation LeBrun $V^{-1} = \partial_z \Psi$.
- Solution Regularity of the 11d metric yields irregular 4d metrics Kretschmann scalar ~ $(\partial_z \Psi)^{-6}$.
- **W** Halphen (Atiyah–Hitchin) is a non-singular solution of the Darboux–Halphen $SL(2, \mathbb{R})$ family.
- **3** We satisfy the b.c. for 11d regularity by transforming the Atiyah–Hitchin under this $SL(2, \mathbb{R})$.
- There is no axisymmetric limit electrostatics description is inapplicable.