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Background
e Soliton equation with self-consistent sources
(Physical applications: hydrodynamics, plasma, solid state physics)
KdV case: capillary-gravity waves (Mel'nikov, 1989,...)
NLS case: electrostatic & acoustic wave (Leon, 1991,...)
KP case, modified Manakov case...



Background
e Soliton equation with self-consistent sources
(Physical applications: hydrodynamics, plasma, solid state physics)
KdV case: capillary-gravity waves (Mel'nikov, 1989,...)
NLS case: electrostatic & acoustic wave (Leon, 1991,...)
KP case, modified Manakov case...

e Integration of soliton equation with sources
Inverse scattering method (Mel'nikov, 1990; Lin, Zeng 2001...)
Matrix theory (Mel'nikov, 1989)
0—method (Doktorov, Shchesnovich, 1996)
Darboux transformation (binary) (Zeng,Ma,Shao,2001; ...)
Hirota method (Matsuno,1991; Hu,1991; Chen,Zhang,2003,...)
Hirota method: source generalization (Hu,Wang,Gegenhasi,2006,...)



KdV & KdV equation with sources (KAVES):
KdV:

ur = —(6uug + uzzz).



KdV & KdV equation with sources (KAVES):
KdV:

ur = —(6uug + uzzz).

KAVES (Mel'nikov, 1988):

0 < o
Ut = —(6uuaz + U:cxa:) — 22— Z ija
Oz =1



Restricted flows and KdV hierarchy with sources
For N distinct A;, j = 1,..., N, the high-order restricted flows of
the KdV hierarchy (for n =0,1,---) is defined as

SHn . <& OA; S
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Restricted flows and KdV hierarchy with sources
For N distinct A;, j = 1,..., N, the high-order restricted flows of

the KdV hierarchy (for n =0,1,---) is defined as
SHn . L 6A; SN
ou ‘—1 ou

]_

The KdV hierarchy with self-consistent sources (KdVHWS) is

ou

SHy, N 5N .
9 —7J
ou Z ou

j=1
For n = 1, we have the KdV equation with sources (KAVES)

P N
Ut = —(6uua: + U:cxx) - 2% Z Qb%
=1

2 Z — =0, ¢j,mx+(>\j+u)¢j = 0, —J = ngQ, j=1,---

=2, =1,

N,



Solving KdV hierarchy with sources
by inverse scattering method (ISM)



T he initial-value problem of the KdVHWS

Assume u(z,t), ¢;(x,t),j = 1,..., N, vanish rapidly as |x| — oo,

(a) up(z) satisfies: [ (Jzug(z)| + z |u(])(:1;)|)d:c < 00
]_
(b) the Schrodinger equation

Vex + (>\ + uO(x))@b = 0,
has exactly N distinct discrete eigenvalues as

\; = (ikj)* = —k7, where k; >0, j=1,---,N.



T he initial-value problem of the KdVHWS

Assume u(z,t), ¢;(x,t),j = 1,..., N, vanish rapidly as |x| — oo,

(a) up(z) satisfies: [ (Jzug(z)| + z |u(])(a;)|)da: < 00
(b) the Schrodinger equation =
Vrx + (>\ + uO(x))@b = 0,

has exactly N distinct discrete eigenvalues as

\; = (ikj)* = —k7, where k; >0, j=1,---,N.
Let 3,(t),5 = 1,..., N, be arbitrary continuous function of t. Using
the inverse scattering method, we shall point out the way of
constructing the solution v = u(z,t),¢; = ¢,(x,t),j = 1,..., N, of
KdV hierarchy with sources such that

1 oo
u(@,0) =uo(@), 5[ Fadde=g0), =1, N



Definition of the scattering data
Denote Jost solutions of Schrédinger equation (A = k2) as

f(x,k,t) ~ e kT T — —00,
Fr(x, k,t) ~ k7, x — +o0.
The scattering coefficients for k£ € (—oco,00), kK #= 0, as
f_(CB, ka t) — CL(k‘, t)f_l_(iﬁ, _ka t) + b(k7 t)f_l_(CU, k? t)
Suppose



The evolution of scattering data

Using the auxiliary linear problems for KAVHWS, we get the
evolution of scattering data.

T he evolution of scattering coefficients:

% o, Doty

ot ot

The evolution of discrete spectrum:

dk; |
—:O7 ]:17°°°7N7
dt

The evolution of normalization constants:

oC; ~

(Lin, Zeng Ma, 2001)



Solving the initial-value problem of KAVHWS

By solving the Gel'fand-Levitan-Marchenko equation

o
K(z,9) + Flz+y) + [ K(w,8)F(s+y)ds =0, y>a,
T
with
27 J—oo a(k) — J ’
j_
) . CN, da , . -1 .
F(t) = ~iCy(0) | k)| . G=10 N,
one can get the solution to the initial-value problem of KAVHWS:
d

u(x,t) = 2£K(:c, x).

T

85(@.) = 2/28,05®) (e + [T K@ s)e s, j=1,



Soliton solutions of the KAdVES
KAdVES:

o N
or ‘=4

J

Gj za + (Nj +u)p; =0, j=1,---,N.

one-soliton solution of KAVES with N =1, A\ = (ik1)?:
(discrete eigenvalues: ikq; initial normalization const.: E%(O))

t
u(x,t) = Qk%sechQ(klx — 4k§t — 4/0 B1(z)dz + xq),

¢1(x,t) = 2\/k151 (t)sech(kiz — 4k3t — 4/Ot B1(2)dz + xp),

where zg = log 5V12(]5§- (Lin, Zeng Ma, 2001)



2-soliton solution of KAVES with N =2, A\{ = —4, > = —1.:
(discrete eigenvalues: 21, 4; initial normalization const.: 12, 6)

12 {3 + 4cosh[2z — 8t — 8 ¢ B2(2)dz] + cosh[4x — 64t — 8 [} Bl(z)dz]}

u =

A2 7
———cosh[z — 4t — 4 [} d
by =4 651(75)(:05 [z tA4fOBQ(z) z]’
inh[2z — 32t — 4 [ d
¢2:4\/@S|n [2x tA 4 [581(2) z]’

A = COSh[3x—36t—4/0 (Bl(z)—l—ﬁg(z))dz]—l—?)cosh[x—28t—4/O (B1(2)—PB2(2))dz].
(Lin, Zeng Ma, 2001)



Varieties of dynamics of soliton solutions
2-soliton solution u(x,t) of KAVES with 81(z) = 1, B>(z) = 9,

the soliton with smaller amplitude may propagate faster!

t = —0.06 t=20 t = 0.06

(Lin, Zeng Ma, 2001)



Solving KdV equation with sources
by Darboux transformation (DT)

(Two kinds of DT's)



Recall: Darboux transformation for KdV
KdV:

ut, = —(6uur + ugzz),
LLax pair for KdV:
52
@w+(/\+u)w = 0,
0

ot



Recall: Darboux transformation for KdV
KdV:

Uty — —(6uug + uzzz),
LLax pair for KdV:
82
@W‘F(A‘FU)\U =0,
0
ot

Darboux transformation for KdV:

If & and wu satisfy the Lax pair for KdV,

f and u satisfy the Lax pair for KdV with A = Ay
— W and @ satisfy the Lax pair for KdV, where

— 1
xma%—@wz—f $
T T

; ; u=u-+287Inf.

Y




Wronskian determinant
Given functions g1(x), g1(x), ..., gm(x), define Wronskian deter-
minant W (g1, ...,g9m) as

g1 g2 dm
g1 g2 gm,
W(QlaQQa'“agm) — ”,CU “,.CU mx

om—lgy om—lgy, ... 9 lgy,



KAVES & its auxiliary linear problems
KdV equation with sources (KAVES):

_ 0 X o

Uty — —(6uug + uzzz) — 2% - (/5]'7

J

The auxiliary linear problems for KAVES:

Waw + (N 4+ u)W =0,

1

N
Y]

=1

¢j(¢j,azw - ngwzc)



Darboux Transformation for KdV with sources
If u,¢1,...,0n is a solution of KAVES, W satisfy
Ve + (A +u)W =0,

=1
f and ¢ are two solutions of the above linear problems with
A= Ay1, and W(f,g) # O
= DNefme S=f+g,
¢—W(5¢) u—u—|—28£|n5,
o 1 W(S,$;) .
Qb] - \/)\ >‘N—|—l S 9 ] - 1 N7
satlsfy the auxiliary linear problems for KAVES

\U:vx"‘()\‘l'u)w_o

th — U:IZW + (4X — 2“)\"33 + Z P >\ Qb](gb] mw ijwx)
=1




Darboux Transf. (DT-I) for KdV with sources
If u,¢1,...,0n is a solution of KAVES, W satisfy

Wor + (N 4+ w)W =0,

Vi, = ug W + (4X\ — 2u)Wy + Z P )\ ¢](¢] WV — ¢]wm)
j_
f and g are two solutions of the above linear problems with
A= Ayy1, and W(f,g) # O
= Define S=C(t)f 4+ g, (C(t) is differentiable)

@_W(Sw) i =u-+292InS,
_ 1 W(5,¢;5) _ .y _ C, W(S.f
¢j VA AN S S J=Les N, PN+1 = W(ftag) (S )’

satisfy the auxiliary linear problems for KAVES
\Um;—l—()\—l—u)\lf = 0,

wtl — uxw + (4) — Qu)wx + Z N\ )\ ¢](¢] :IZ\U ¢]W:L‘)
=1



Darboux Transf. (DT-I) for KdV with sources
If u,¢1,...,0n is a solution of KAVES, W satisfy

Wi+ A+ uw)¥W =0,

Vi, = ug W + (4X\ — 2u)Wy + Z P )\ ¢](¢] WV — ¢]wm)
j_
f and g are two solutions of the above linear problems with
A= Ayy1, and W(f,g) # O
= Define S=C(t)f 4+ g, (C(t) is differentiable)

QZ—W(S¢> i =u-+292InS,
_ 1 W(5,¢;5) _ .y _ C, W(S.f
¢j VA AN S S J=Les N, PN+1 = W(ftag) (S )’

satisfy the auxiliary linear problems for KAVES
\Um;—l—()\—l—u)\lf = 0,

wtl — uxw + (4 — QU)WZC + Z W )\ ¢](¢] :IZ\U ¢]w:c)
]_
It's a non-auto-Backlund transformation between KAdVES's.

(Lin, Zeng, 2006)



Soliton solution obtained by DT-I
The KAVES with N =1 and Ay = 0 has the following solution

u =0, ¢1 = n(2).

With the above u and ¢1, we take two solutions of the auxiliary
linear problems for KAVES with A\ = —k? (where kK > 0) as

d £)2
f=eptha—a(), 9= exp(—heta(®), 2= ap3 M7
Then use the DT-I with C(t) = exp(—22(t)), where z(t) is a
differentiable function of ¢, we get a solution of the KAVES with
N=2 A =0, \»=—k2,

7 = 2k?sech?(kz—a(t)—z(t)), p1 = —n(t) tanh(kz—a(t)—z(t)),

~ dz
Po = \/kzasech(kx —a(t) — z(1)),




Rational solution obtained by DT-I
The KAVES with N = 0 has a trivial solution

u = 0.

Take two solutions of the auxiliary linear problems for KAVES
with v = 0 and A = 0 as follows

=1 g =,
then use the DT-I for KAVES, we get a rational solution of the
KAdVES with N =1, \{ =0,
_2 . _ /Ct

“Cerom? T Gro®y




Darboux Transf. (DT-II) for KAV with sources
If u,¢1,...,0n Is a solution of KAVES, W satisfy:

Waw + (N 4+ u)W =0,

Wy, = ugW + (4N —2u) Wz + Z W )\ ¢j(¢j =WV — ¢jwac)
]_
f(z,t,\y+41) and g(x,t, A1) are two solutions of the above lin-
ear problems with A = Ay41, and W(f,g) #0

= Define T'= C(1) f (2, t, An41) + Iy, ,9(@, 6 An 1),

v = nggéj:;')”, i =u+282InW(g,T),
1 W(g,T,9;) L 7 _ Cy W(g,T,f)
¢J A= An41 W(g, T)t7 ’ j=1..,N, ¢N+1 o W(]Z;ag) Wi(g,T) "’

satlsfy the auxnlary linear problems for KAVES
\Uxaz"‘()\‘l'u)w = 0,
N4+1

\Utl — U:cw + (41 — QU)\UQ; + Z P )\ ¢](¢]x Qggil?as)
=1
(Lin, Zeng, 2006)



Positon solution obtained by DT-II
The KAVES with N =1 and Aq{ = 0 has a solution

u=0 b1 = dn(t)
) 1 dt
With the above u and ¢1, we take two solutions of the auxiliary

linear problems for KAVES with A = k2 (k > 0) as

O+ bk,

where b(k) is a differentiable function of k. Using the DT-II, we
get a solution of KAVES with N =2, A\{ =0, \» = k2 (k > 0),

_ 32k?(2k%ycos© —sin@®)sin©

J = cosO, g = Sin ©, © = kx + 4k3t —

~

“ (4k2~ —sin(20))2 ’
3, — — /Mt (4k%y + sin(20)) - 4kVEkCisin®©
L™ ak2y —sin(2e) 27 4k2y —sin(20)’

where v = C(t) + iak@.



Negaton solution obtained by D T-II
The KAVES with N =1 and Aq{ = 0 has a solution

u=0 b1 = i [ dn(t)
) 1 dt

With the above u and ¢1, we take two solutions of the auxiliary

linear problems for KAVES with A = —k2 (where k£ > 0) as

77()

f = cosh ©, g = sinh ©, © = kx — 4k3t + 7 + b(k),

where b(k) is a differentiable function of k. Using DT—II, we get
a solution of KAVES with N =2, A\{ =0, \» = —k2, (k> 0),

8k2(2k2y cosh © 4+ sinh®) sinh ©
(2k2~ + sinh © cosh ©)2 ’

~

u =

3, — VTt (—2k?~y + sinh © cosh ©) ~ 2k+/kC;sinh ©

2k2~ +sinh®cosh©® ' 2= 2k2~ + sinh© cosh ©’
where v = C(t) — 2_1133/6@-



KP equation with self-consistent sources



KP equation with self-consistent sources
The 1st type: (Mel'nikov, Zeng, Hu, Zhang, Deng, ...)

N
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qiay — q’l,ZU.CU + 2uq27 Ti,y — _’r‘i’xm - 2’“}7’@, Z - 1, .oy N.



KP equation with self-consistent sources
The 1st type: (Mel'nikov, Zeng, Hu, Zhang, Deng, ...)

N
=1
Qiy = Qioe + 2Uqi, Tiy = —Tize —2ur;, i=1,..., N.

The 2nd type: (Mel'nikov, Hu, Wang, ...)

N

Ay — 120ty — Uzas — 3D My = 3 [Giaati — Giriza + (qi73)y],
=1

3 3 o 3
qit — Qi,xxx + 3“%’,1‘ + EQiD_l'U»y + 5%; q;7; + Eua:qm

3 3« 3
Tit = Tigzas T 3UTiz — EmD_luy — 57’@'; a7+ > UaTi



KP equation with self-consistent sources
The 1st type: (Mel'nikov, Zeng, Hu, Zhang, Deng, ...)

N

=1
qiay - q’l,ZU.CU —I_ 2uq’l7 Ti,y — _Ti’x,@ - 2’“}7’@, Z — 1, .oy N.

The 2nd type: (Mel'nikov, Hu, Wang, ...)

N

Ay — 120ty — Uzas — 3D My = 3 [Giaati — Giriza + (qi73)y],
=1

3 3 o 3
qit — Qi,xxx + SUQi,x + EQiD_l'U»y + 5%; q;7; + Eu:cqm

3 3« 3
Tit = Tigzas T 3UTiz — EmD_luy — 57’@'; a7+ > UaTi

Problem: How to generate these two systems in a systematical way?



KP equation with self-consistent sources
The 1st type: (Mel'nikov, Zeng, Hu, Zhang, Deng, ...)

N
(Aur — 12uuy — Uggr )z — Suyy + 4Z(qiri)m =0, U= u
i=1
Qiy = Qigz + 2UQqi, Tiy = —Tige —2ur;, t=1,..., N.
The 2nd type: (Mel'nikov, Hu, Wang, ...)
N

Quy — 12uuy — Uppy — 3D_1’U,yy =3 Z[Qi,xwri — qiTixx + (Qirz')y]a
=1

3 3 o 3
qi,t — YQixxx + 3UQi,x + EQiD_luy + EQZ; q;7; + Eux%'y

3 3« 3
Tig = Tigee T 3UTig — Em'D_luy 5T > ari+ > UaTiy

j=1
Problem: How to generate these two systems in a systematical way?

—— constructing a new extended KP hierarchy (KP hierarchy with self-
consistent sources, KPHWS) (Liu, Zeng, Lin, 2008)



he KP hierarchy with sources
(KPHWS)



The KP hierarchy
The KP hierarchy

atnL — [_Bn7 L], Bn — Ln ,

where L=04+ 3 w0 =04 u10~L 4+ ud2+....
by

1



The KP hierarchy
The KP hierarchy

atnL — [Bn, L], Bn — Ln ,

where L=04+ 3 w0 =04 u10~L 4+ ud2+....
1 =1

The commutativity of 9y, flows gives the zero-curvature equa-
tions of KP hierarchy

Bn,t), — B, + [Bn, Bg] = 0.



The (adjoint) wave function
The wave function and the adjoint one satisfy

Lw = zw, — = Bhw,

Otn,

ow™

Otn,

= —(Bp)*w™.

* %k *
L w" = zw",



The (adjoint) wave function
The wave function and the adjoint one satisfy

0
Lw = zw, T = Brw,
Otn
6 *k
L*w* = zw™, E;: = —(Bp)*w™.
n

It can be proved that (see, e.g., Dickey)

T(z)-=)>_ L' 277 = wo tw*.
17



Introducing a new vector field
Define a new variable 1, whose vector field is

_8tk Z ZC_S la

1s>0
where (;'s are arbitrary distinct non-zero parameters.



Introducing a new vector field
Define a new variable 1, whose vector field is

N

Or, =0y, — 3. S ¢ Loy,

1=1s>0
where (;'s are arbitrary distinct non-zero parameters.

Then it can be proved that

N
Lr, =By + Y ;0 'r; L],
i=1

where ¢; = w(x,t; (), r;, = w*(x,t;, (), t = (t1,t2,t3,...) and

git, = Bn(q;), i t, = —Bp(r;), i=1,---,N.



KP hierarchy with sources (KPHWS)
The Lax type equations

N
Ly, = [Bn, L], L, =B+ Y ¢0 tri, L], (n#k),
1=1
give the KPHWS

N N
Bnr, — (B + Y ¢;0 )i, + [Bn, By + Y ;0 1ri] =0,
i=1 i=1

¢%t, = Bn(a), 7it,=—-Bp(r;), i=1,--- N.



KP hierarchy with sources (KPHWS)
The Lax type equations

N
Li, = [Bn, L], L, =B+ Y ¢0 tri, L], (n#k),
1=1

give the KPHWS
al 1 l 1
Bng, — (B + Y 40 " ri)t, + [Bn, B+ ) ¢0 "r;] =0,
i=1 i=1

¢%t, = Bn(a), 7it,=—-Bp(r;), i=1,--- N.
The KPHWS admits a Lax representation

N
WTk — (Bk + Z Qia_lri)(\lj)a th — Bn(w)
1=1

(Liu, Lin, Zeng, 2008)



Example in the KPHWS:
(n=2, k=23)

yields the 1st type of KP equation with self-consistent sources

Ul ty, — ULl zo — 2u2,£(3 — 07
N
2“1,7‘3 — 3u2,t2 - 3“1,:13,152 + Ul xxx + 3u27q3x — 6’UJ1U]_,;C + 20, Z q;r; = 0,
1=1
qit> — Q1,00 — 2uyq9; = 0,
rz-,tQ—I—ri’m—FQulri:O, 1=1,...,N.



Example in the KPHWS:

(n=2, k= 3)

vields the 1st type of KP equation with self-consistent sources
Ul,t, — Ul,gx — 2u2,£(3 — 07

N
2ul,T:J, — 3u2,t2 — 3“1,:1:,152 + Ul xxx + 3“2,3336 — 6“1“1,:1: + 20, Z q;r; = 0O,
1=1
qit> — Q1,00 — 2uyq9; = 0,
ri,tQ—I—ri’m—FQulri:O, 1=1,...,N.

The Lax representation is (where u = uy)
3 351 3 N1
Wiy = (02 4+ 3ud + 5D “ut, + 5uz + _Zl q; 0" r;) (W),
1=

Wi, = (8% + 2u)(W).



Example in the KPHWS:
(n=3, k=2)

vields the 2nd type of KP equation with sources

N
Ul 75 — Ul zx — 2“2,:{; + Oz Z qir; = 0,
1=1
N
3ug r, + 33Ul g — 2’Ufl,t3 — UL prr T OULIUL z — 3UD zo T 30y Z qiz7i = 0,
1=1
itz — Qi,xaxx — 3“1%,:1: — 3(“1,:{: + u2)gq; = 0O,
Tits — Tizze — SU1Tix + 3usr; = 0, 1 =1,...,N.



Example in the KPHWS:
(n=3, k=2)

vields the 2nd type of KP equation with sources

N
Ul 75 — Ul zx — 2“2,:{; + Oz Z qir; = 0,
1=1
N

3u2,7'2 + 3u1,$,7‘2 - 2ul,t3 — Ul ,zxx + Ouiuy o — 33U 44 + 30 Z qizTi = 0,
1=1

itz — Qi,xaxx — 3“1%,3} — 3(“1,:{: + u2)gq; = 0O,
Tits — Tizze — SU1Tix + 3usr; = 0, 1=1,...,N.

The Lax representation is (where u = uq)
2 N 1
W, = (0 + 2u+ '21 q;0™ 1) (W),
1=

3 34-1 3 3 X
Wy, = (0° + 3uo + 5D™  ur, + suz + 5 .Zl q;r;) (V).
1=



tn-reduction of KPHWS:

The t,,-reduction is given by

L™ = B, or



tn-reduction of KPHWS:

The t,,-reduction is given by
L" = Bp or L" =0,

then the KPHWS reduces to the Gelfand-Dickey hierarchy with
self-consistent sources

k N
Bn,Tk — [(Bn)i + Z Q’ia_l’r’b Bn]a
1=1



tn-reduction of KPHWS :

n = 2, k = 3 gives the 1st type of KdV equation with sources
(Mel'nikov, ...)
1 N
Ul 7y — 3ULUL 5 — 2 Uaza + 0z Y qir; =0,
i=1
Qizx + 2u1q; — (%q; =0,
Ti,$$+2ulr’i_czrizoa Z:].,,N



tn-reduction of KPHWS :

n = 2, k = 3 gives the 1st type of KdV equation with sources
(Mel'nikov, ...)

N
1
Ul 7y — 3ULUL 5 — 2 Uaza + 0z Y qir; =0,
i=1
2
Qi zx T 2u19; — (7q; = 0O,
Ti,3333+2u17a’i_<2ri207 Z:].,,N

The Lax representation is (where u = uq)

(8% 4 2u) (W) = AV,

N
o= (034 300+ Su+ D 40 i) (W)
1=1



tn-reduction of KPHWS

n = 3, k = 2 gives the 1st type of Boussinesg equation with
self-consistent sources

N
- 2“2,:13 — U] xx + Ul + Ox Z q;r; = 0O,
=1
N
3“2,7'2 — 3“2,:{::{; + 3“1,9&,7'2 + 6u1ul,x — U] zxx + 30z Z 4y, 2T — 0,
=1
G zox T 3u1q 2 + 3(u1 ¢ + us)g; — ¢¢; =0,
i, xxx + 3ulri,:c — 3uor; + Csri =0, 1 =1,---,N.



tn-reduction of KPHWS

n = 3, k = 2 gives the 1st type of Boussinesg equation with
self-consistent sources

N
- 2“2,:13 — Ul zx + Ul + Oz Z qir; = 0,
1=1
N

3u277'2 o 3“’2750513 + 3u1,m,7'2 + 6u1ul,x — Ul zxx + 30z Z i, xTi — 0,
1=1

G zox T 3u1q 2 + 3(u1 ¢ + us)g; — ¢¢; =0,
i, xxx + 3ulri,:c — 3uor; + Csri =0, 1 =1,---,N.

The Lax representation is

(8% + 3u10 + 3uz + 3ug 2) (W) = AW,

N
Wy = (0% 4 2uy + Y ¢80 tr) (W),
i=1



T.-reduction of KPHWS:

The m-reduction is given by

N
L*=B,+ Y ¢otr,
1=1



T.-reduction of KPHWS:

The m-reduction is given by

N
LF =By, + > ;0" 1ry,
i=1

then the KPHWS reduces to the k-constrained KP hierarchy

N
(Bk‘|‘ py qz-a—lm) [(Bk+ > 0~ 1n)+,Bk+ z ;0 1r
1= tn,

=1

% t, = (B + Z q;0 "“j)ﬁ_(qz’),
']_

Yoty — _(Bk'—l_ z QJa 1T])+ (TZ) 1= 17 7N7
]_



T.-reduction of KPHWS:

n = 3, k = 2 gives the 2nd type of KdV equation with sources
(or Yajima-Oikawa equation)

N
1 3
Uitz — Zul,a:xa: + 3“1“1,:13 + Z .Zl(%,xa:ri - Qirz',xx)a
1=
3 3 X
dit3 — Qi,xxx + 3“1Qi,x + Eul,x% + 5% Z q;7 g,

=1

N
3 3 .
ity = Tigze T 3ULTjz + SULali = 5T > " g1, i=1,--- . N.
1=1



T.-reduction of KPHWS:

n = 2, k = 3 gives the 2nd type of Boussinesq equation with
sources

— 2u2,ac — Ul xx + Ul,tr — 07

N
Bug t, — 3u2 gp + 3ul pt, + O6UIUL 5 — UL gag — 20z Y qiT; = O,
i=1

d;,xx + 2u14q;,

—T4 pg — 2U1T5, 1 =1,---,N.

dito

Ti,to



Generalized dressing approach for solving
the KPHWS



Wronskian determinant:

For a set of functions {hq,ho,...,hyx}, the Wronskian determi-
nant is defined as

h1 ho hn
(1) (1) (1)
Wr(hy.- hy) =| M hy? Ry n®) = ok (),

th'_1) th'_l) hng'_l)



Dressing approach for KP hierarchy
For the KP hierarchy

Ltn — [Bn, L])

the following formula solves the KP hierarchy

hi  ho -+ hy 1
1 COREENC) BN €
L = 58571, S = hi® ha R
Wr(hh--- 7hN) : : : : :
th) th) L. hEVN) 8N
with h; = f; + «;9;, (a; are constants)




Dressing approach for KP hierarchy with sources :
For the KP hierarchy with sources

N
—1
Ltn — [BTL:L]) LTk — [Bk + Z Q’La TiaL]7
i=1
the following formula solves the KP hierarchy with sources
hi hs -+ hy 1
COREENC) N ¢
L =S85t S = = hl. h? . hf.V ? :
Wr(hh--- ,hN) : : : : :
N N N
. Wr(hl Bz hN) '
i = —a;7,5(9:), i = (—1)N L : =1,...,N.
@ =—inSle), =) ( Wr(ha,--- ) ) 7’
with h; = f; + o;(72.) g5, (o;(7,) are differentiable functions)
o, (fi) = 0" fi, 0, (g:) = 0"gi, i=1,...,N.

0. (fi) = 0" fi, 9-.(gi) = 0"gi, i=1,...,N.



Lemmas for proving the dressing formula:
For the L, S, h;, q;,r; given in the dressing formula for the KPHWS,
we have

N
Lemma 1. S~ 1= ¥ ;07 1r;.
=1

Lemma 2. 8—1riS iIs a pure differential operator, and

(@ triS) (h)) = 65, 1<i,j<N.

Lemma 3.

2
[

—L"S,

N
Sr, = —LF S+ Y q07 ;8.
1=1



he mMKP hierarchy with sources
(MKPHWS)



The mKP hierarchy
The mKP hierarchy

8tni — [Enai]a é’n — (En)Z]_)
where L = 9+ 1g + @101 + 12072+ - -



The mKP hierarchy
The mKP hierarchy

8tni — [Ena E]) é’n — (En)Z]_)
where L = 9+ 1g + @101 + 12072+ - -
The commutativity of 9y, flows gives the zero-curvature equa-
tions of mMKP hierarchy

én,tm — Bm,tn ‘I’ [én, ém] = 0.



The mKP hierarchy
The mKP hierarchy

8tni — [Ena E]) é’n — (En)Z]_)
where L =04 a9+ w1071 + 0,072+ ---
The commutativity of 9y, flows gives the zero-curvature equa-
tions of mMKP hierarchy
én,tm — Bm,tn + [én, ém] = 0.
When n =2, m = 3, — MmKP equation:
4'Ut — Vpxx _I_ 6'02'Ugj — 3(D_1'Uyy) - 67.)5[;(D_1'Uy) — O,

where t :=1t3, y :=to, v := up.



MKP hierarchy with sources (MmKPHWS)
The MmKPHWS is constructed as

N
LTk — [Bk + Z 6]“7;8_17’;’2.8’ L]a
1=1
f/tn — [éna z]? vn # k,
Gitn = Bn(@),  Tig, = —(0Bn0~1)"(%), =1, ,N.



MKP hierarchy with sources (MmKPHWS)
The MmKPHWS is constructed as

N

LTk — [Bk + Z 6]“7;8_17’2’2.8, L]a
1=1

f/tn — [éna z]? vn # k,

Git, = Bn(@), 7iy, = —(0Bnd~1)*(7), i=1,---,N.

The mKPHWS admits a Lax representation

N
th — Bn(\lf), WTk — (Bk + Z @iﬁ_lfia)(W).
1=1

(Liu, Lin, et al, J. Math. Phys. 2009)



Example in mKPHWS

n =2, k= 3 gives the 1st type of mKP equation with sources

- - D 1~ - -
4uO,t — UQ,zxx + 6“0“0,3} — 3D UuQ,yy — 6uO,xD uO Y + 4 Z (¢iT7i)z = O,
1=1
qz',y — ai,:cx + 2710@&',337
"Fi,y = _"Fz',acx —+ Qﬂoﬁ',x, 1=1,..., N,

where t .= 13,y := t»o.



Example in mKPHWS

n = 3, k = 2 gives the 2nd type 6f MKP equation with sources

4'170,t - aO,xwx + 663770,33 - 3D_1?A1jo,yy - 6ao,xD_1’ljo’y
+ 2[3((}/@771,331: — E];,x:sz) 3(Qsz)y — 6(170(}/@771) ] — O

3~~ 3.

QZ t — QZ TXT _I‘ 3uoqz Tx + (D ,y)Qz T 2uo,xqi,x + 5 Oqz T + qz T Z(Z]}’F]),
L o 3. _ 3., 3. o
Tit = Tizzr — SU0Tizz + = (D ,y)rz x Euo,mrz’,m + Euori,m + 57"1',:5 Z(erj),

where y := m,t 1= t3.



Gauge transformation between
KPHWS and mKPHWS



Gauge transformation
Suppose L, g;'s, and r;’'s satisfy the KPHWS, and f is a particular

eigenfunction for the Lax pair of the KPHWS, i.e.,

N
fon=Bn(),  fno=Bp+ Y a0 r)(f),

1=1
then

L:=fT'Lf, @=f"q 7=-0""(fr)=("")"(fr.
satisfy the mKPHWS.

(Liu, Lin, et al. J. Math. Phys 2009)



Wronskian solutions of mKPHWS

we choose

) — (_1)Nwr(8(h1)a a(hQ)a Tt 7a(hN))
Wr(hy,ho, -+ ,hy)

as the particular eigenfunction for the Lax pair of the KPHWS,

where S is the dressing operator defined in the dressing approach

for KPHWS. Then the Wronskian solution for the mKPHWS is

f=5(1

7 -1 Wr(hla"' 7h’N78) Wr(hl)"' 7hN7a) -1

L=ylLf= ,
Wr(9(h1), -+ ,0(hy)) |[Wr(0(h1), -+ ,0(hyN))

_ _ , Wr(h1,ho, -+ ,hn, g; _

qi:f 1Qi:_ (1 2 NgZ) Z:]-)'--aNa

“Wr(8(hy), 0(ha), -, 0(hN))

(W), 0GR, D))
e 7 (fTZ) - ( Wr(h17h27"' 7hN) > |




Soliton solution of 2nd type KP equation with sources:
(n =3,k =2) Take
£, = exp(\z + )\-2y + )\375) = ebi,
gi = exp(uiz + pfy + u3 ) = el
hi = fi + 0i(w)g; = 2y /e 2 cosh(<)

where X\; #= u;, 2; = @ — %In(ai). then we get one-soliton
solution by dressing method with N =1

_ (- p1)?

sech?(Q),

77
q1 = /<o y(>\1—u1)6 2 sech(Q1),
1 §1+m
e T sech(£21).




Soliton solution of 2nd type mKP equation with sources
(n=3,k=2)
we get the one-soliton solution by the gauge transformation

)\ —
v = 12‘“[tanh(§21+91)—tanh(le)],

- §1+m1
g1 = 9y(yJar/(A1p1))(u1 — Ad1)e 2 sech(§2 + 61),
1 _&tm

e 2 sech(2q.
2./aq

~

ry = —




he g-deformed case:

extended ¢g-KP hierarchy
extended g-Modified KP hierarchy



e g-deformed integrable systems (Kac, Jimbo, Frenkel, Tu, He,...)
q-Gelfand-Dickey hierarchy, ¢g-KP hierarchy, ...

"0z replaced by “9;":

flgz) — f(x)

2(f()) = T




e g-deformed integrable systems (Kac, Jimbo, Frenkel, Tu, He,...)
q-Gelfand-Dickey hierarchy, ¢g-KP hierarchy, ...

"0z replaced by “9;":

() =TTy a(s@)  when g1




The ¢g-KP hierarchy
The ¢g-KP hierarchy

atnL — [Bn,L], Bn — Ln,
where L = 9, + 5 w0yt = 8y 4+ up +u10; M +upd 2+,
i=0

flgz) — f (@)

Th T U@ = fa),

9 (f(x)) =




The ¢g-KP hierarchy
The ¢g-KP hierarchy

atnL — [Bn,L], Bn — Ln,
where L = 9, + 5 w0yt = 8y 4+ up +u10; M +upd 2+,
i=0

flgz) — f (@)

Th s 0U@) = fm).

9 (f(x)) =

The commutativity of 9y, flows gives the zero-curvature equa-
tions of ¢-KP hierarchy

Bnt, — Bk, + [Bn, Bi] = 0.



The (adjoint) g-wave function
The g-wave function and the adjoint one satisfy

ow
Lwg = zwg, i Brwg,
q q 8tn nwq
ow
— q __
L*|m/qw(}k = zwyg, = —(Bn|x/q)*w2';.
Otn,

where Pl = Y p;(z/t)t'd} for P =3 p;(x)d,.
(4 1



The (adjoint) g-wave function
The g-wave function and the adjoint one satisfy

ow
Lwg = zwg, i Brwg,
q q 8tn nwq
ow
— q __
L*|$/qw;; = zwyg, = —(Bn|x/q)*w2';.
Otn,

where Pl = Y p;(z/t)t'd} for P =3 p;(x)d,.
(4 1

It can be proved that (see, e.g., Ming-Hsien TU 1999)

T(z)-=)_ bl = wq(‘?q_lﬁ(wz;).
1€7



Introduce a new vector field
Define a new variable 1, whose vector field is

_8tk Z ZC_S ]_a

1=1s>0
where (;'s are arbitrary distinct non-zero parameters.



Introduce a new vector field
Define a new variable 1, whose vector field is

_8tk Z ZC_S la

1=1s>0
where (;'s are arbitrary distinct non-zero parameters.

Then it can be proved that

N
Ly, = [By+ > sz’aq_l%'a L],
=1

where ¢; = wq(x,t; (), ¥ = 0(wy(z,t;¢)), t = (t1,t2,t3,- -

¢i,tn — Bn(¢2)7 ¢Z Jtn — = —B, (Wa) 1= 17 Ty

.) and

N.



New extended ¢-KP hierarchy
The Lax type equations

N
Ltn — [Bn7 L]a LTk — [Bk: + Z ¢zaq_1¢27 L]7
1=1

give a new extended g-KP hierarchy

N N
Bnz — (B + Y. 60, i)t + [Bn, By + > ¢:i0, 4] =0,
i=1 1=1

¢i,tn — Bn(¢z)7 %,tn — —BZ(%)a 1=1,---,N.



New extended ¢-KP hierarchy
The Lax type equations

N
Ltn — [BTH L]7 LTk — [Bk: + Z ¢zaq_1¢27 L]7
1=1

give a new extended g-KP hierarchy

N N
Bnz — (B + Y. 60, i)t + [Bn, By + > ¢:i0, 4] =0,
i=1 1=1

bit, = Bn(di), ir, = —Bp(;), i=1,--- N.
The new extended hierarchy admits a Lax representation

N
Vo, = (B + Y $:0; ') (W), W, = Bp(WV).
i=1

(Lin, Peng, Mafas, 2010)



KPHWS an ¢-KPHWS:

([ 1st KP with sources

2nd KP with sources
KPHWS [
GD with sources: 1st KdV with sources ...

k-constrained KP: 2nd KdV with sources ...

reductions{

\



KPHWS an ¢-KPHWS:

([ 1st KP with sources

2nd KP with sources
KPHWS [
GD with sources: 1st KdV with sources ...
k-constrained KP: 2nd KdV with sources ...

reductions{

\

[ 1st q-KP with sources

2nd ¢g-KP with sources
qg-KPHWS [
q-GD with sources: 1st ¢-KdV with sources ...

k-constrained ¢g-KP: 2nd ¢-KdV with sources ...

reductions {

\



KPHWS an ¢-KPHWS:

([ 1st KP with sources

2nd KP with sources
KPHWS [
GD with sources: 1st KdV with sources ...

k-constrained KP: 2nd KdV with sources ...

reductions{

T (¢ —1,u0=0)

[ 1st q-KP with sources

2nd ¢g-KP with sources
qg-KPHWS [
q-GD with sources: 1st ¢-KdV with sources ...

k-constrained ¢g-KP: 2nd ¢-KdV with sources ...

reductions {

\



Bilinear identity for KPHWS:

Theorem The bilinear identity for the KP hierarchy with self-
consistent sources (KPHWS) (with new time flow denoted by ¢;)
IS given by the following sets of residue identities with auxiliary
variable z:

Res) w(z — ,t,A) - w*(z —f,,t',\) =0,

Res) wz(z — T, t,A) - w*(z — T, t/,A) = q(z — &, t)r(z — £, t'),

Resy w(z — &, 6, A) -0 L (q(z — T tHw*(z — T, t, A)) = —q(z — %, t),
Resy 0 ! (r(z — T, )w(z — I, t,A)) - w*(z — t,t, ) =r(z -1, t),

where t = (t17t27 T 7tk—17{k7tk—|—17 T )v t/ = (t/ 7t/ y T 7t;€_17t_/]€7t;€+17 T

(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)



Tau function for KPHWS:

Make the following ansatz:

T(z — tk: + k)\k? — [AD)

w(z —t,t,\) = Gt cexp &(t, N),
’LU*(Z — {ka t, >‘) — T(Z _j_k(z _ i\:::)—l_ [ ]) exp(—g(t, )‘))7
. O'(Z,t) - _ p(Z,t)
Q(Z,t) - ( t)7 ( 7t) ’T(Z,t)
where £(t,\) = [AF + z tX, [N = (% 5520 5730 )

(Ref. Cheng and Zhang 1994 Loris and Willox, 1997).

(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)



Hirota bilinear equations for KPHWS:

Then we have
Resy 7(z,t — []) 7(z.t' + [A]) 500 =,
Res) 7:(z,t — [\]) 7(z,t/ 4+ [A]) £E-EN

— Resy 7(z,t — [A]) (8:10g 7(z,t)) 7(z,t' + []) ST

= 5(z,t) p(z,t"),

Resy A7 (2,6 — [A]) &(2,t/ + [A]) 70N = 5(2,t) 7(2,t),
Resy A 15(z,t — [A]) 7(2,t' 4+ [A]) St — 50, 1) 7(2, ).
Here the bar = over a function f(z,t) is defined as f(z,t) =

f(z — 1%, t), e.q, F(z,t - [A]) = T(z — (B — 35), b — [/\]).

This gives the Hirota bilinear equations for the KPHWS.
(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)



Example: for the 2nd type of KPWS

The Hirota bilinear equations for the KPWS-II can be obtained
as

Dyty -7+ 0op =0,

(D + 3(Dg, — D2)? — 4Dy Dyy)7 -7 =0,
((Dg, — Dz) + D2)T -0 =0,

((Dg, — Dz) + D2)p -7 = 0.

(4Dy; — D3 + 3Dx(Dg, — D)7 -0 =0,
(4Dty — D3 + 3Dx(Dg, — D2))p -7 = 0.

(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)



Ref: Result by Hu and Wang (2007)

Another Hirota bilinear equations for the KPWS-II can be ob-
tained by Pfaffian method (by Hu and Wang, 2007)

M
(D} —4D.D; +3D})f - f =6 ) (Dyki - f — Dxgi - hi),
i=l
Dyki - f+gihi =0,
M
(Dy—D)gi-f=Pif—g Y ki
j=l1
M
(D, — D) f -h; = h; ij =]

j=1

B M
(D} +3D,Dy —4D,)g;- f =3Dx | Pi- f — gi - (Z k;ﬂ )

W
(D2 +3D,D, —4D,)f - h; = 3D, (ij) chi — f - Q:} :



The idea to the full discrete system:

discrete KP (or Hirota-Miwa) equation with self-consistent sources:
X.B. Hu, H. Wang, Inverse Probl. 2006;

A. Doliwa, R. Lin, Phys. Letts. A, 2014.
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Conclusion:

([ 1st KP with sources

2nd KP with sources
KPHWS /{
GD with sources: 1st KdV with sources ...

k-constrained KP: 2nd KdV with sources ...

reductions{

\

e The KPHWS and mKPHWS are constructed by introducing a
new time flow;

e a generalized dressing approach is introduced to solve the
KPHWS:;

e 3 gauge transformation is established between KPHWS and
MKPHWS;

e the Wronskian solution of KPHWS and mKPHWS are obtained;
e the bilinear identity of KPHWS is derived.



Thank youl



