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Background
• Soliton equation with self-consistent sources

(Physical applications: hydrodynamics, plasma, solid state physics)

KdV case: capillary-gravity waves (Mel’nikov, 1989,...)

NLS case: electrostatic & acoustic wave (Leon, 1991,...)

KP case, modified Manakov case...

• Integration of soliton equation with sources

Inverse scattering method (Mel’nikov, 1990; Lin, Zeng 2001,

...)

Matrix theory (Mel’nikov, 1989)

∂−method (Doktorov, Shchesnovich, 1996)

Darboux transformation (binary) (Zeng,Ma,Shao,2001; ...)

Hirota method (Matsuno,1991; Hu,1991; Chen,Zhang,2003,...)

Hirota method: source generalization (Hu,Wang,Gegenhasi,2006,...)
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KdV & KdV equation with sources (KdVES):
KdV:

ut = −(6uux+ uxxx).

KdVES (Mel’nikov, 1988):

ut = −(6uux+ uxxx)− 2
∂

∂x

N∑
j=1

ϕ2j ,

ϕj,xx+ (λj + u)ϕj = 0, j = 1, · · · , N.
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Restricted flows and KdV hierarchy with sources
For N distinct λj, j = 1, ..., N , the high-order restricted flows of
the KdV hierarchy (for n = 0,1, · · · ) is defined as

δHn

δu
−2

N∑
j=1

δλj

δu
= 0, ϕj,xx+(λj+u)ϕj = 0,

δλj

δu
= ϕ2j , j = 1, · · · , N.

The KdV hierarchy with self-consistent sources (KdVHWS) is

utn = D

δHn
δu

− 2
N∑
j=1

δλj

δu

 , ϕj,xx+(λj+u)ϕj = 0,
δλj

δu
= ϕ2j , j = 1, · · · , N.

For n = 1, we have the KdV equation with sources (KdVES)

ut1 = −(6uux+ uxxx)− 2
∂
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N∑
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Solving KdV hierarchy with sources

by inverse scattering method (ISM)



The initial-value problem of the KdVHWS
Assume u(x, t), ϕj(x, t), j = 1, ..., N, vanish rapidly as |x| → ∞,

(a) u0(x) satisfies:
∫∞
−∞(|xu0(x)|+

2n+1∑
j=0

|u(j)0 (x)|)dx <∞;

(b) the Schrödinger equation

ψxx+ (λ+ u0(x))ψ = 0,

has exactly N distinct discrete eigenvalues as

λj = (ikj)
2 = −k2j , where kj > 0, j = 1, · · · , N.

Let βj(t), j = 1, ..., N, be arbitrary continuous function of t. Using
the inverse scattering method, we shall point out the way of
constructing the solution u = u(x, t), ϕj = ϕj(x, t), j = 1, ..., N, of
KdV hierarchy with sources such that

u(x,0) = u0(x),
1

8

∫ ∞

−∞
ϕ2j (x, t)dx = βj(t), j = 1, · · · , N.
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Definition of the scattering data
Denote Jost solutions of Schrödinger equation (λ = k2) as

f−(x, k, t) ∼ e−ikx, x→ −∞,

f+(x, k, t) ∼ eikx, x→ +∞.

The scattering coefficients for k ∈ (−∞,∞), k ̸= 0, as

f−(x, k, t) = a(k, t)f+(x,−k, t) + b(k, t)f+(x, k, t).

Suppose

f−(x, ikj, t) = C̃j(t)f
+(x, ikj, t), j = 1, · · · , N.



The evolution of scattering data
Using the auxiliary linear problems for KdVHWS, we get the
evolution of scattering data.
The evolution of scattering coefficients:

∂a

∂t
= 0,

∂b

∂t
= 8ik2n+1b.

The evolution of discrete spectrum:

dkj

dt
= 0, j = 1, · · · , N,

The evolution of normalization constants:

∂C̃j

∂t
= 8

[
(−1)n+1k2n+1

j + βj(t)
]
C̃j, j = 1, · · · , N.

(Lin, Zeng Ma, 2001)



Solving the initial-value problem of KdVHWS
By solving the Gel’fand-Levitan-Marchenko equation

K(x, y) + F (x+ y) +
∫ ∞

x
K(x, s)F (s+ y)ds = 0, y > x,

with

F (x) =
1

2π

∫ ∞

−∞

b(k)

a(k)
eikxdk+

N∑
j=1

c̄2j (t)e
−kjx,

c̄2j (t) = −iC̃j(t)
[
∂a

∂k
(ikj)

]−1
, j = 1, · · · , N,

one can get the solution to the initial-value problem of KdVHWS:

u(x, t) = 2
d

dx
K(x, x).

ϕj(x, t) = 2
√
2βj(t)c̄j(t)

(
e−kjx+

∫ ∞

x
K(x, s)e−kjsds

)
, j = 1, · · · , N,



Soliton solutions of the KdVES
KdVES:

ut = −(6uux+ uxxx)− 2
∂

∂x

N∑
j=1

ϕ2j ,

ϕj,xx+ (λj + u)ϕj = 0, j = 1, · · · , N.

one-soliton solution of KdVES with N = 1, λ1 = (ik1)
2:

(discrete eigenvalues: ik1; initial normalization const.: c̄21(0))

u(x, t) = 2k21sech
2(k1x− 4k31t− 4

∫ t
0
β1(z)dz+ x0),

ϕ1(x, t) = 2
√
k1β1(t)sech(k1x− 4k31t− 4

∫ t
0
β1(z)dz+ x0),

where x0 = log
√
2k1

c̄1(0)
. (Lin, Zeng Ma, 2001)



2-soliton solution of KdVES with N = 2, λ1 = −4, λ2 = −1:

(discrete eigenvalues: 2i, i; initial normalization const.: 12, 6)

u =
12

{
3+ 4cosh[2x− 8t− 8

∫ t
0 β2(z)dz] + cosh[4x− 64t− 8

∫ t
0 β1(z)dz]

}
∆2

,

ϕ1 = 4
√
6β1(t)

cosh[x− 4t− 4
∫ t
0 β2(z)dz]

∆
,

ϕ2 = 4
√
3β2(t)

sinh[2x− 32t− 4
∫ t
0 β1(z)dz]

∆
,

∆ = cosh[3x−36t−4

∫ t

0
(β1(z)+β2(z))dz]+3cosh[x−28t−4

∫ t

0
(β1(z)−β2(z))dz].

(Lin, Zeng Ma, 2001)



Varieties of dynamics of soliton solutions
2-soliton solution u(x, t) of KdVES with β1(z) = 1, β2(z) = 9,

the soliton with smaller amplitude may propagate faster!
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Solving KdV equation with sources

by Darboux transformation (DT)

(Two kinds of DT’s)



Recall: Darboux transformation for KdV
KdV:

ut1 = −(6uux+ uxxx),

Lax pair for KdV:

∂2

∂x2
Ψ+ (λ+ u)Ψ = 0,

∂

∂t1
Ψ = uxΨ+ (4λ− 2u)Ψx.

Darboux transformation for KdV:
If Ψ and u satisfy the Lax pair for KdV,
f and u satisfy the Lax pair for KdV with λ = λ1
⇒ Ψ̃ and ũ satisfy the Lax pair for KdV, where

Ψ̃ ≡ Ψx −
fx

f
Ψ =

1

f

∣∣∣∣∣ f Ψ
fx Ψx

∣∣∣∣∣ , ũ ≡ u+2∂2x ln f.
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Wronskian determinant
Given functions g1(x), g1(x), ..., gm(x), define Wronskian deter-

minant W (g1, ..., gm) as

W (g1, g2, ..., gm) =

∣∣∣∣∣∣∣∣∣
g1 g2 · · · gm
g1,x g2,x · · · gm,x
· · · · · · · · · · · ·

∂m−1
x g1 ∂m−1

x g2 · · · ∂m−1
x gm

∣∣∣∣∣∣∣∣∣ .



KdVES & its auxiliary linear problems
KdV equation with sources (KdVES):

ut1 = −(6uux+ uxxx)− 2
∂

∂x

N∑
j=1

ϕ2j ,

ϕj,xx+ (λj + u)ϕj = 0, j = 1, · · · , N.

The auxiliary linear problems for KdVES:

Ψxx+ (λ+ u)Ψ = 0,

Ψt1 = uxΨ+ (4λ− 2u)Ψx+
N∑
j=1

1

λ− λj
ϕj(ϕj,xΨ− ϕjΨx).



Darboux Transformation for KdV with sources
If u, ϕ1, ..., ϕN is a solution of KdVES, Ψ satisfy

Ψxx+ (λ+ u)Ψ = 0,

Ψt1 = uxΨ+ (4λ− 2u)Ψx+
N∑
j=1

1
λ−λjϕj(ϕj,xΨ− ϕjΨx),

f and g are two solutions of the above linear problems with
λ = λN+1, and W (f, g) ̸= 0
⇒ Define S ≡ f + g, (C(t) is differentiable)

ψ̃ = W (S,ψ)
S , ũ = u+2∂2x lnS,

ϕ̃j =
1√

λj−λN+1

W (S,ϕj)
S , j = 1, ..., N, ϕ̃N+1 =

√
Ct

W (f,g)
W (S,f)

S ,

satisfy the auxiliary linear problems for KdVES
Ψ̃xx+ (λ+ ũ)Ψ̃ = 0,

Ψ̃t1 = ũxΨ̃ + (4λ− 2ũ)Ψ̃x+
N∑
j=1

1
λ−λj ϕ̃j(ϕ̃j,xΨ̃− ϕ̃jΨ̃x).

It’s a non-auto-Bäcklund transformation between KdVES’s.
(Lin, Zeng, 2006)



Darboux Transf. (DT-I) for KdV with sources
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Soliton solution obtained by DT-I
The KdVES with N = 1 and λ1 = 0 has the following solution

u = 0, ϕ1 = η(t).

With the above u and ϕ1, we take two solutions of the auxiliary
linear problems for KdVES with λ = −k2 (where k > 0) as

f = exp(kx−a(t)), g = exp(−kx+a(t)),
da

dt
= 4k3−

η(t)2

k
.

Then use the DT-I with C(t) = exp(−2z(t)), where z(t) is a
differentiable function of t, we get a solution of the KdVES with
N = 2, λ1 = 0, λ2 = −k2,

ũ = 2k2sech2(kx−a(t)−z(t)), ϕ̃1 = −η(t) tanh(kx−a(t)−z(t)),

ϕ̃2 =

√
k
dz

dt
sech(kx− a(t)− z(t)),



Rational solution obtained by DT-I
The KdVES with N = 0 has a trivial solution

u = 0.

Take two solutions of the auxiliary linear problems for KdVES

with u = 0 and λ = 0 as follows

f = 1, g = x,

then use the DT-I for KdVES, we get a rational solution of the

KdVES with N = 1, λ1 = 0,

ũ =
−2

(x+ C(t))2
, ϕ̃1 =

−
√
Ct

(x+ C(t))
.



Darboux Transf. (DT-II) for KdV with sources
If u, ϕ1, ..., ϕN is a solution of KdVES, Ψ satisfy:

Ψxx+ (λ+ u)Ψ = 0,

Ψt1 = uxΨ+ (4λ− 2u)Ψx+
N∑
j=1

1
λ−λjϕj(ϕj,xΨ− ϕjΨx),

f(x, t, λN+1) and g(x, t, λN+1) are two solutions of the above lin-
ear problems with λ = λN+1, and W (f, g) ̸= 0
⇒ Define T ≡ C(t)f(x, t, λN+1) + ∂λN+1

g(x, t, λN+1),

Ψ̃ = W (g,T,Ψ)
W (g,T ) , ũ = u+2∂2x lnW (g, T ),

ϕ̃j =
1

λj−λN+1

W (g,T,ϕj)
W (g,T ) , j = 1, ..., N, ϕ̃N+1 =

√
Ct

W (f,g)
W (g,T,f)
W (g,T ) ,

satisfy the auxiliary linear problems for KdVES
Ψ̃xx+ (λ+ ũ)Ψ̃ = 0,

Ψ̃t1 = ũxΨ̃ + (4λ− 2ũ)Ψ̃x+
N+1∑
j=1

1
λ−λj ϕ̃j(ϕ̃j,xΨ̃− ϕ̃jΨ̃x).

(Lin, Zeng, 2006)



Positon solution obtained by DT-II
The KdVES with N = 1 and λ1 = 0 has a solution

u = 0, ϕ1 =

√
dη(t)
dt .

With the above u and ϕ1, we take two solutions of the auxiliary
linear problems for KdVES with λ = k2 (k > 0) as

f = cosΘ, g = sinΘ, Θ = kx+4k3t−
η(t)

k
+ b(k),

where b(k) is a differentiable function of k. Using the DT-II, we
get a solution of KdVES with N = 2, λ1 = 0, λ2 = k2 (k > 0),

ũ =
32k2(2k2γ cosΘ− sinΘ) sinΘ

(4k2γ − sin(2Θ))2
,

ϕ̃1 =
−√

ηt(4k2γ + sin(2Θ))

4k2γ − sin(2Θ)
, ϕ̃2 =

4k
√
kCt sinΘ

4k2γ − sin(2Θ)
,

where γ = C(t) + 1
2k∂kΘ.



Negaton solution obtained by DT-II
The KdVES with N = 1 and λ1 = 0 has a solution

u = 0, ϕ1 =

√
dη(t)
dt .

With the above u and ϕ1, we take two solutions of the auxiliary
linear problems for KdVES with λ = −k2 (where k > 0) as

f = coshΘ, g = sinhΘ, Θ = kx− 4k3t+
η(t)

k
+ b(k),

where b(k) is a differentiable function of k. Using DT-II, we get
a solution of KdVES with N = 2, λ1 = 0, λ2 = −k2, (k > 0),

ũ =
8k2(2k2γ coshΘ+ sinhΘ) sinhΘ

(2k2γ + sinhΘcoshΘ)2
,

ϕ̃1 =
√
ηt(−2k2γ + sinhΘcoshΘ)

2k2γ + sinhΘcoshΘ
, ϕ̃2 =

2k
√
kCt sinhΘ

2k2γ + sinhΘcoshΘ
,

where γ = C(t)− 1
2k∂kΘ.



KP equation with self-consistent sources
The 1st type: (Mel’nikov, Zeng, Hu, Zhang, Deng, ...)

(4ut − 12uux − uxxx)x − 3uyy +4
N∑
i=1

(qiri)xx = 0, u := u1

qi,y = qi,xx +2uqi, ri,y = −ri,xx − 2uri, i = 1, . . . , N.

The 2nd type: (Mel’nikov, Hu, Wang, ...)

4ut − 12uux − uxxx − 3D−1uyy = 3
N∑
i=1

[qi,xxri − qiri,xx + (qiri)y],

qi,t = qi,xxx +3uqi,x +
3

2
qiD

−1uy +
3

2
qi

N∑
j=1

qjrj +
3

2
uxqi,

ri,t = ri,xxx +3uri,x −
3

2
riD

−1uy −
3

2
ri

N∑
j=1

qjrj +
3

2
uxri,

Problem: How to generate these two systems in a systematical way? =⇒
constructing a new extended KP hierarchy (Liu, Zeng, Lin,
2008)
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KP equation with self-consistent sources
The 1st type: (Mel’nikov, Zeng, Hu, Zhang, Deng, ...)

(4ut − 12uux − uxxx)x − 3uyy +4
N∑
i=1

(qiri)xx = 0, u := u1

qi,y = qi,xx +2uqi, ri,y = −ri,xx − 2uri, i = 1, . . . , N.

The 2nd type: (Mel’nikov, Hu, Wang, ...)

4ut − 12uux − uxxx − 3D−1uyy = 3
N∑
i=1

[qi,xxri − qiri,xx + (qiri)y],

qi,t = qi,xxx +3uqi,x +
3

2
qiD

−1uy +
3

2
qi

N∑
j=1

qjrj +
3

2
uxqi,

ri,t = ri,xxx +3uri,x −
3

2
riD

−1uy −
3

2
ri

N∑
j=1

qjrj +
3

2
uxri,

Problem: How to generate these two systems in a systematical way?

=⇒ constructing a new extended KP hierarchy (KP hierarchy with self-

consistent sources, KPHWS) (Liu, Zeng, Lin, 2008)



The KP hierarchy with sources
(KPHWS)



The KP hierarchy
The KP hierarchy

∂tnL = [Bn, L], Bn = Ln+,

where L = ∂ +
∞∑
i=1

ui∂
−i = ∂ + u1∂

−1 + u2∂
−2 + . . . .

The commutativity of ∂tn flows gives the zero-curvature equa-

tions of KP hierarchy

Bn,tk −Bk,tn + [Bn, Bk] = 0.
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where L = ∂ +
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−i = ∂ + u1∂

−1 + u2∂
−2 + . . . .

The commutativity of ∂tn flows gives the zero-curvature equa-

tions of KP hierarchy

Bn,tk −Bk,tn + [Bn, Bk] = 0.



The (adjoint) wave function
The wave function and the adjoint one satisfy

Lw = zw,
∂w

∂tn
= Bnw,

L∗w∗ = zw∗,
∂w∗

∂tn
= −(Bn)

∗w∗.

It can be proved that (see, e.g., Dickey)

T (z)− ≡
∑
i∈Z

Li−z
−i−1 = w∂−1w∗.
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Li−z
−i−1 = w∂−1w∗.



Introducing a new vector field
Define a new variable τk whose vector field is

∂τk = ∂tk −
N∑
i=1

∑
s≥0

ζ−s−1
i ∂ts,

where ζi’s are arbitrary distinct non-zero parameters.

Then it can be proved that

Lτk = [Bk +
N∑
i=1

qi∂
−1ri, L],

where qi = w(x, t; ζi), ri = w∗(x, t; ζi), t = (t1, t2, t3, . . .) and

qi,tn = Bn(qi), ri,tn = −B∗
n(ri), i = 1, · · · , N.
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qi,tn = Bn(qi), ri,tn = −B∗
n(ri), i = 1, · · · , N.



KP hierarchy with sources (KPHWS)
The Lax type equations

Ltn = [Bn, L], Lτk = [Bk +
N∑
i=1

qi∂
−1ri, L], (n ̸= k),

give the KPHWS

Bn,τk − (Bk +
N∑
i=1

qi∂
−1ri)tn + [Bn, Bk +

N∑
i=1

qi∂
−1ri] = 0,

qi,tn = Bn(qi), ri,tn = −B∗
n(ri), i = 1, · · · , N.

The KPHWS admits a Lax representation

Ψτk = (Bk +
N∑
i=1

qi∂
−1ri)(Ψ), Ψtn = Bn(Ψ).

(Liu, Lin, Zeng, 2008)
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Example in the KPHWS:
(n = 2, k = 3)
yields the 1st type of KP equation with self-consistent sources

u1,t2 − u1,xx − 2u2,x = 0,

2u1,τ3 − 3u2,t2 − 3u1,x,t2 + u1,xxx+3u2,xx − 6u1u1,x+2∂x
N∑
i=1

qiri = 0,

qi,t2 − qi,xx − 2u1qi = 0,

ri,t2 + ri,xx+2u1ri = 0, i = 1, . . . , N.

The Lax representation is (where u ≡ u1)

Ψτ3 = (∂3 +3u∂ + 3
2D

−1ut2 + 3
2ux+

N∑
i=1

qi∂
−1ri)(Ψ),

Ψt2 = (∂2 +2u)(Ψ).
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Example in the KPHWS:
(n = 3, k = 2)
yields the 2nd type of KP equation with sources

u1,τ2 − u1,xx − 2u2,x+ ∂x
N∑
i=1

qiri = 0,

3u2,τ2 +3u1,x,τ2 − 2u1,t3 − u1,xxx+6u1u1,x − 3u2,xx+3∂x
N∑
i=1

qi,xri = 0,

qi,t3 − qi,xxx − 3u1qi,x − 3(u1,x+ u2)qi = 0,

ri,t3 − ri,xxx − 3u1ri,x+3u2ri = 0, i = 1, . . . , N.

The Lax representation is (where u ≡ u1)

Ψτ2 = (∂2 +2u+
N∑
i=1

qi∂
−1ri)(Ψ),

Ψt3 = (∂3 +3u∂ + 3
2D

−1uτ2 + 3
2ux+

3
2

N∑
i=1

qiri)(Ψ).
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tn-reduction of KPHWS:
The tn-reduction is given by

Ln = Bn or Ln− = 0,

then the KPHWS reduces to the Gelfand-Dickey hierarchy with

self-consistent sources

Bn,τk = [(Bn)
k
n
+ +

N∑
i=1

qi∂
−1ri, Bn],

Bn(qi) = ζni qi, B∗
n(ri) = ζni ri, i = 1, · · · , N.
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tn-reduction of KPHWS :
n = 2, k = 3 gives the 1st type of KdV equation with sources

(Mel’nikov, ...)

u1,τ3 − 3u1u1,x −
1

4
u1,xxx+ ∂x

N∑
i=1

qiri = 0,

qi,xx+2u1qi − ζ2qi = 0,

ri,xx+2u1ri − ζ2ri = 0, i = 1, · · · , N.

The Lax representation is (where u ≡ u1)

(∂2 +2u)(Ψ) = λΨ,

Ψt = (∂3 +3u∂ +
3

2
ux+

N∑
i=1

qi∂
−1ri)(Ψ).
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tn-reduction of KPHWS :
n = 3, k = 2 gives the 1st type of Boussinesq equation with
self-consistent sources

− 2u2,x − u1,xx+ u1,τ2 + ∂x
N∑
i=1

qiri = 0,

3u2,τ2 − 3u2,xx+3u1,x,τ2 +6u1u1,x − u1,xxx+3∂x
N∑
i=1

qi,xri = 0,

qi,xxx+3u1qi,x+3(u1,x+ u2)qi − ζ3qi = 0,

ri,xxx+3u1ri,x − 3u2ri+ ζ3ri = 0, i = 1, · · · , N.
The Lax representation is

(∂3 +3u1∂ +3u2 +3u1,x)(Ψ) = λΨ,

Ψt = (∂2 +2u1 +
N∑
i=1

qi∂
−1ri)(Ψ).
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τk-reduction of KPHWS:
The τk-reduction is given by

Lk = Bk +
N∑
i=1

qi∂
−1ri,

then the KPHWS reduces to the k-constrained KP hierarchy(
Bk +

N∑
i=1

qi∂
−1ri

)
tn

=

[
(Bk +

N∑
i=1

qi∂
−1ri)

n
k
+, Bk +

N∑
i=1

qi∂
−1ri

]
,

qi,tn = (Bk +
N∑
j=1

qj∂
−1rj)

n
k
+(qi),

ri,tn = −(Bk +
N∑
j=1

qj∂
−1rj)

n
k∗
+ (ri), i = 1, · · · , N,
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τk-reduction of KPHWS:
n = 3, k = 2 gives the 2nd type of KdV equation with sources

(or Yajima-Oikawa equation)

u1,t3 =
1

4
u1,xxx+3u1u1,x+

3

4

N∑
i=1

(qi,xxri − qiri,xx),

qi,t3 = qi,xxx+3u1qi,x+
3

2
u1,xqi+

3

2
qi

N∑
j=1

qjrj,

ri,t3 = ri,xxx+3u1ri,x+
3

2
u1,xri −

3

2
ri

N∑
i=1

qjrj, i = 1, · · · , N.



τk-reduction of KPHWS:
n = 2, k = 3 gives the 2nd type of Boussinesq equation with

sources

− 2u2,x − u1,xx+ u1,t2 = 0,

3u2,t2 − 3u2,xx+3u1,x,t2 +6u1u1,x − u1,xxx − 2∂x
N∑
i=1

qiri = 0,

qi,t2 = qi,xx+2u1qi,

ri,t2 = −ri,xx − 2u1ri, i = 1, · · · , N.



Generalized dressing approach for solving
the KPHWS



Wronskian determinant:
For a set of functions {h1, h2, . . . , hN}, the Wronskian determi-

nant is defined as

Wr(h1, · · · , hN) =

∣∣∣∣∣∣∣∣∣∣
h1 h2 · · · hN

h
(1)
1 h

(1)
2 · · · h

(1)
N... ... ... ...

h
(N−1)
1 h

(N−1)
2 · · · h

(N−1)
N

∣∣∣∣∣∣∣∣∣∣
, h

(k)
i ≡ ∂k(hi),



Dressing approach for KP hierarchy with sources :
For the KP hierarchy with sources

Ltn = [Bn, L], Lτk = [Bk +
N∑
i=1

qi∂
−1ri, L],

the following formula solves the KP hierarchy with sources

L = S∂S−1, S =
1

Wr(h1, · · · , hN)

∣∣∣∣∣∣∣∣
h1 h2 · · · hN 1

h(1)1 h(1)2 · · · h(1)N ∂
... ... ... ... ...

h(N)
1 h(N)

2 · · · h(N)
N ∂N

∣∣∣∣∣∣∣∣ ,

qi = −αi,τkS(gi), ri = (−1)N−i
(
Wr(h1, · · · , ĥi, · · · , hN)

Wr(h1, · · · , hN)

)
, i = 1, . . . , N.

with hi = fi+ αigi, (αi are constants)

∂tn(fi) = ∂nfi, ∂tn(gi) = ∂ngi, i = 1, . . . , N.

∂τk(fi) = ∂kfi, ∂τk(gi) = ∂kgi, i = 1, . . . , N.
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qi = −αi,τkS(gi), ri = (−1)N−i

(
Wr(h1, · · · , ĥi, · · · , hN)

Wr(h1, · · · , hN)

)
, i = 1, . . . , N.

with hi = fi+ αi(τk)gi, (αi(τk) are differentiable functions)

∂tn(fi) = ∂nfi, ∂tn(gi) = ∂ngi, i = 1, . . . , N.

∂τk(fi) = ∂kfi, ∂τk(gi) = ∂kgi, i = 1, . . . , N.



Lemmas for proving the dressing formula:
For the L, S, hi, qi, ri given in the dressing formula for the KPHWS,
we have

Lemma 1. S−1 =
N∑
i=1

hi∂
−1ri.

Lemma 2. ∂−1riS is a pure differential operator, and

(∂−1riS)(hj) = δij, 1 ≤ i, j ≤ N.

Lemma 3.

Stn = −Ln−S,

Sτk = −Lk−S +
N∑
i=1

qi∂
−1riS.



The mKP hierarchy with sources
(mKPHWS)



The mKP hierarchy
The mKP hierarchy

∂tnL̃ = [B̃n, L̃], B̃n = (L̃n)≥1,

where L̃ = ∂ + ũ0 + ũ1∂
−1 + ũ2∂

−2 + · · · .

The commutativity of ∂tn flows gives the zero-curvature equa-

tions of mKP hierarchy

B̃n,tm − B̃m,tn + [B̃n, B̃m] = 0.

When n = 2, m = 3, =⇒ mKP equation:

4vt − vxxx+6v2vx − 3(D−1vyy)− 6vx(D
−1vy) = 0,

where t := t3, y := t2, v := ũ0.
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−1vy) = 0,

where t := t3, y := t2, v := ũ0.



mKP hierarchy with sources (mKPHWS)
The mKPHWS is constructed as

L̃τk = [B̃k +
N∑
i=1

q̃i∂
−1r̃i∂, L̃],

L̃tn = [B̃n, L̃], ∀n ̸= k,

q̃i,tn = B̃n(q̃i), r̃i,tn = −(∂B̃n∂
−1)∗(r̃i), i = 1, · · · , N.

The mKPHWS admits a Lax representation

Ψtn = B̃n(Ψ), Ψτk = (B̃k +
N∑
i=1

q̃i∂
−1r̃i∂)(Ψ).

(Liu, Lin, et al, J. Math. Phys. 2009)
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Example in mKPHWS :
n = 2, k = 3 gives the 1st type of mKP equation with sources

4ũ0,t − ũ0,xxx+6ũ20ũ0,x − 3D−1ũ0,yy − 6ũ0,xD
−1ũ0,y +4

N∑
i=1

(q̃ir̃i)x = 0,

q̃i,y = q̃i,xx+2ũ0q̃i,x,

r̃i,y = −r̃i,xx+2ũ0r̃i,x, i = 1, . . . , N,

where t := τ3, y := t2.



Example in mKPHWS :
n = 3, k = 2 gives the 2nd type of mKP equation with sources

4ũ0,t − ũ0,xxx +6ũ20ũ0,x − 3D−1ũ0,yy − 6ũ0,xD
−1ũ0,y

+
N∑
i=1

[3(q̃ir̃i,xx − q̃i,xxr̃i)− 3(q̃ir̃i)y − 6(ũ0q̃ir̃i)x] = 0,

q̃i,t = q̃i,xxx +3ũ0q̃i,xx +
3

2
(D−1ũ0,y)q̃i,x +

3

2
ũ0,xq̃i,x +

3

2
ũ20q̃i,x +

3

2
q̃i,x

N∑
j=1

(q̃jr̃j),

r̃i,t = r̃i,xxx − 3ũ0r̃i,xx +
3

2
(D−1ũ0,y)r̃i,x −

3

2
ũ0,xr̃i,x +

3

2
ũ20r̃i,x +

3

2
r̃i,x

N∑
j=1

(q̃jr̃j),

where y := τ2, t := t3.



Gauge transformation between
KPHWS and mKPHWS



Gauge transformation
Suppose L, qi’s, and ri’s satisfy the KPHWS, and f is a particular

eigenfunction for the Lax pair of the KPHWS, i.e.,

ftn = Bn(f), fτk = (Bk +
N∑
i=1

qi∂
−1ri)(f),

then

L̃ := f−1Lf, q̃i := f−1qi, r̃i := −∂−1(fri) = (∂−1)∗(fri),

satisfy the mKPHWS.

(Liu, Lin, et al. J. Math. Phys 2009)



Wronskian solutions of mKPHWS
we choose

f = S(1) = (−1)N
Wr(∂(h1), ∂(h2), · · · , ∂(hN))

Wr(h1, h2, · · · , hN)

as the particular eigenfunction for the Lax pair of the KPHWS,

where S is the dressing operator defined in the dressing approach

for KPHWS. Then the Wronskian solution for the mKPHWS is

L̃ = f−1Lf =
Wr(h1, · · · , hN , ∂)

Wr(∂(h1), · · · , ∂(hN))
∂

[
Wr(h1, · · · , hN , ∂)

Wr(∂(h1), · · · , ∂(hN))

]−1

,

q̃i = f−1qi = −α̇i
Wr(h1, h2, · · · , hN , gi)

Wr(∂(h1), ∂(h2), · · · , ∂(hN))
, i = 1, . . . , N,

r̃i = −∂−1(fri) =

(
Wr(∂(h1), · · · , ˆ∂(hi), · · · , ∂(hN))

Wr(h1, h2, · · · , hN)

)
.



Soliton solution of 2nd type KP equation with sources:
(n = 3, k = 2) Take

fi = exp(λix+ λ2i y+ λ3i t) := eξi,

gi = exp(µix+ µ2i y+ µ3i t) := eηi,

hi = fi+ αi(y)gi = 2
√
αie

ξi+ηi
2 cosh(Ωi)

where λi ̸= µi, Ωi = ξi−ηi
2 − 1

2 ln(αi). then we get one-soliton

solution by dressing method with N = 1

u =
(λ1 − µ1)

2

4
sech2(Ω),

q1 =
√
α1y(λ1 − µ1)e

ξ1+η1
2 sech(Ω1),

r1 =
1

2
√
α1
e−

ξ1+η1
2 sech(Ω1).



Soliton solution of 2nd type mKP equation with sources
(n = 3, k = 2)

we get the one-soliton solution by the gauge transformation

v =
λ1 − µ1

2
[tanh(Ω1 + θ1)− tanh(Ω1)],

q̃1 = ∂y(
√
α1/(λ1µ1))(µ1 − λ1)e

ξ1+η1
2 sech(Ω1 + θ1),

r̃1 = −
1

2
√
α1
e−

ξ1+η1
2 sechΩ1.



The q-deformed case:

extended q-KP hierarchy
extended q-Modified KP hierarchy



• q-deformed integrable systems (Kac, Jimbo, Frenkel, Tu, He,...)

q-Gelfand-Dickey hierarchy, q-KP hierarchy, ...

“∂x” replaced by “∂q”:

∂q(f(x)) =
f(qx)− f(x)

x(q − 1)
−→ ∂x(f(x)) when q → 1



• q-deformed integrable systems (Kac, Jimbo, Frenkel, Tu, He,...)

q-Gelfand-Dickey hierarchy, q-KP hierarchy, ...

“∂x” replaced by “∂q”:

∂q(f(x)) =
f(qx)− f(x)

x(q − 1)
−→ ∂x(f(x)) when q → 1



The q-KP hierarchy
The q-KP hierarchy

∂tnL = [Bn, L], Bn = Ln+,

where L = ∂q +
∞∑
i=0

ui∂
−i
q = ∂q + u0 + u1∂

−1
q + u2∂

−2
q + · · · ,

∂q(f(x)) =
f(qx)− f(x)

x(q − 1)
, θ(f(x)) = f(qx).

The commutativity of ∂tn flows gives the zero-curvature equa-

tions of q-KP hierarchy

Bn,tk −Bk,tn + [Bn, Bk] = 0.
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tions of q-KP hierarchy

Bn,tk −Bk,tn + [Bn, Bk] = 0.



The (adjoint) q-wave function
The q-wave function and the adjoint one satisfy

Lwq = zwq,
∂wq

∂tn
= Bnwq,

L∗|x/qw
∗
q = zw∗

q ,
∂w∗

q

∂tn
= −(Bn|x/q)

∗w∗
q .

where P |x/t =
∑
i
pi(x/t)t

i∂iq for P =
∑
i
pi(x)∂

i
q.

It can be proved that (see, e.g., Ming-Hsien TU 1999)

T (z)− ≡
∑
i∈Z

Li−z
−i−1 = wq∂

−1
q θ(w∗

q).
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Introduce a new vector field
Define a new variable τk whose vector field is

∂τk = ∂tk −
N∑
i=1

∑
s≥0

ζ−s−1
i ∂ts,

where ζi’s are arbitrary distinct non-zero parameters.

Then it can be proved that

Lτk = [Bk +
N∑
i=1

ϕi∂
−1
q ψi, L],

where ϕi = wq(x, t; ζi), ψi = θ(w∗
q(x, t; ζi)), t = (t1, t2, t3, . . .) and

ϕi,tn = Bn(ϕi), ψi,tn = −B∗
n(ψi), i = 1, · · · , N.
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New extended q-KP hierarchy
The Lax type equations

Ltn = [Bn, L], Lτk = [Bk +
N∑
i=1

ϕi∂
−1
q ψi, L],

give a new extended q-KP hierarchy

Bn,τk − (Bk +
N∑
i=1

ϕi∂
−1
q ψi)tn + [Bn, Bk +

N∑
i=1

ϕi∂
−1
q ψi] = 0,

ϕi,tn = Bn(ϕi), ψi,tn = −B∗
n(ψi), i = 1, · · · , N.

The new extended hierarchy admits a Lax representation

Ψτk = (Bk +
N∑
i=1

ϕi∂
−1
q ψi)(Ψ), Ψtn = Bn(Ψ).

(Lin, Peng, Mañas, 2010)
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KPHWS an q-KPHWS:

KPHWS


1st KP with sources
2nd KP with sources
. . .

reductions

{
GD with sources: 1st KdV with sources . . .
k-constrained KP: 2nd KdV with sources . . .

↑ (q → 1, u0 ≡ 0)

q-KPHWS


1st q-KP with sources
2nd q-KP with sources
. . .

reductions

{
q-GD with sources: 1st q-KdV with sources . . .
k-constrained q-KP: 2nd q-KdV with sources . . .
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Bilinear identity for KPHWS:

Theorem The bilinear identity for the KP hierarchy with self-

consistent sources (KPHWS) (with new time flow denoted by t̄k)

is given by the following sets of residue identities with auxiliary

variable z:

Resλ w(z − t̄k, t, λ) · w∗(z − t̄′k, t
′, λ) = 0,

Resλ wz(z − t̄k, t, λ) · w∗(z − t̄′k, t
′, λ) = q(z − t̄k, t)r(z − t̄′k, t

′),

Resλ w(z − t̄k, t, λ) · ∂−1
(
q(z − t̄′k, t

′)w∗(z − t̄′k, t
′, λ)

)
= −q(z − t̄k, t),

Resλ ∂
−1 (r(z − t̄k, t)w(z − t̄k, t, λ)) · w∗(z − t̄′k, t

′, λ) = r(z − t̄′k, t
′),

where t = (t1, t2, · · · , tk−1, t̄k, tk+1, · · · ), t′ = (t′1, t
′
2, · · · , t

′
k−1, t̄

′
k, t

′
k+1, · · · ).

(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)



Tau function for KPHWS:

Make the following ansatz:

w(z − t̄k, t, λ) =
τ(z − t̄k +

1
kλk

, t− [λ])

τ(z − t̄k, t)
· exp ξ(t, λ),

w∗(z − t̄k, t, λ) =
τ(z − t̄k − 1

kλk
, t+ [λ])

τ(z − t̄k, t)
· exp(−ξ(t, λ)),

q(z, t) =
σ(z, t)

τ(z, t)
, r(z, t) =

ρ(z, t)

τ(z, t)
.

where ξ(t, λ) = t̄kλ
k +

∑
i̸=k

tiλ
i, [λ] =

(
1
λ,

1
2λ2

, 1
3λ3

, · · ·
)

(Ref. Cheng and Zhang, 1994; Loris and Willox, 1997).

(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)



Hirota bilinear equations for KPHWS:

Then we have

Resλ τ̄
(
z, t− [λ]

)
τ̄
(
z, t′ + [λ]

)
eξ(t−t′,λ) = 0,

Resλ τ̄z
(
z, t− [λ]

)
τ̄
(
z, t′ + [λ]

)
eξ(t−t′,λ)

−Resλ τ̄
(
z, t− [λ]

)
(∂z log τ̄(z, t)) τ̄

(
z, t′ + [λ]

)
eξ(t−t′,λ)

= σ̄(z, t) ρ̄(z, t′),

Resλ λ
−1τ̄

(
z, t− [λ]

)
σ̄
(
z, t′ + [λ]

)
eξ(t−t′,λ) = σ̄(z, t) τ̄(z, t′),

Resλ λ
−1ρ̄

(
z, t− [λ]

)
τ̄
(
z, t′ + [λ]

)
eξ(t−t′,λ) = ρ̄(z, t′) τ̄(z, t).

Here the bar ¯ over a function f(z, t) is defined as f̄(z, t) ≡
f(z − t̄k, t), e.g, τ̄

(
z, t− [λ]

)
≡ τ

(
z − (t̄k − 1

kλk
), t− [λ]

)
.

This gives the Hirota bilinear equations for the KPHWS.
(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)



Example: for the 2nd type of KPWS

The Hirota bilinear equations for the KPWS-II can be obtained

as

Dxτz · τ + σρ = 0,

(D4
x +3(Dt̄2 −Dz)

2 − 4DxDt3)τ · τ = 0,

((Dt̄2 −Dz) +D2
x)τ · σ = 0,

((Dt̄2 −Dz) +D2
x)ρ · τ = 0.

(4Dt3 −D3
x +3Dx(Dt̄2 −Dz))τ · σ = 0,

(4Dt3 −D3
x +3Dx(Dt̄2 −Dz))ρ · τ = 0.

(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)



Ref: Result by Hu and Wang (2007)

Another Hirota bilinear equations for the KPWS-II can be ob-
tained by Pfaffian method (by Hu and Wang, 2007)



The idea to the full discrete system:

discrete KP (or Hirota-Miwa) equation with self-consistent sources:

X.B. Hu, H. Wang, Inverse Probl. 2006;

A. Doliwa, R. Lin, Phys. Letts. A, 2014.



Conclusion:

KPHWS


1st KP with sources
2nd KP with sources
. . .

reductions

{
GD with sources: 1st KdV with sources . . .
k-constrained KP: 2nd KdV with sources . . .

• The KPHWS and mKPHWS are constructed by introducing a

new time flow;

• a generalized dressing approach is introduced to solve the

KPHWS;

• a gauge transformation is established between KPHWS and

mKPHWS;

• the Wronskian solution of KPHWS and mKPHWS are obtained;

• the bilinear identity of KPHWS is derived.
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