Construction of KP hierarchy with self-consistent sources

\&
 its bilinear identity

Runliang Lin
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China
(joint work with Xiaojun Liu and Yunbo Zeng)
(supported by National Natural Science Foundation of China)

Outline:

Outline:

- Background:
soliton equation with self-consistent sources,

Outline:

- Background:
soliton equation with self-consistent sources,
- The KP hierarchy with sources (KPHWS): construction, t_{n}-reduction, τ_{k}-reduction (k-constraint)

Outline:

- Background:
soliton equation with self-consistent sources,
- The KP hierarchy with sources (KPHWS): construction, t_{n}-reduction, τ_{k}-reduction (k-constraint)
- The mKP hierarchy with sources (mKPHWS):

Outline:

- Background:
soliton equation with self-consistent sources,
- The KP hierarchy with sources (KPHWS): construction, t_{n}-reduction, τ_{k}-reduction (k-constraint)
- The mKP hierarchy with sources (mKPHWS):
- Generalized dressing approach for the KPHWS:

Outline:

- Background:
soliton equation with self-consistent sources,
- The KP hierarchy with sources (KPHWS): construction, t_{n}-reduction, τ_{k}-reduction (k-constraint)
- The mKP hierarchy with sources (mKPHWS):
- Generalized dressing approach for the KPHWS:
- Gauge transformation between the KPHWS and the mKPHWS:

Outline:

- Background:
soliton equation with self-consistent sources,
- The KP hierarchy with sources (KPHWS): construction, t_{n}-reduction, τ_{k}-reduction (k-constraint)
- The mKP hierarchy with sources (mKPHWS):
- Generalized dressing approach for the KPHWS:
- Gauge transformation between the KPHWS and the mKPHWS:
- Wronskian solutions of the KPHWS and the mKPHWS

Outline:

- Background:
soliton equation with self-consistent sources,
- The KP hierarchy with sources (KPHWS):
construction, t_{n}-reduction, τ_{k}-reduction (k-constraint)
- The mKP hierarchy with sources (mKPHWS):
- Generalized dressing approach for the KPHWS:
- Gauge transformation between the KPHWS and the mKPHWS:
- Wronskian solutions of the KPHWS and the mKPHWS
- Bilinear identity of the KPHWS

Outline:

- Background:
soliton equation with self-consistent sources,
- The KP hierarchy with sources (KPHWS):
construction, t_{n}-reduction, τ_{k}-reduction (k-constraint)
- The mKP hierarchy with sources (mKPHWS):
- Generalized dressing approach for the KPHWS:
- Gauge transformation between the KPHWS and the mKPHWS:
- Wronskian solutions of the KPHWS and the mKPHWS
- Bilinear identity of the KPHWS
- Conclusion and discussions

Background

- Soliton equation with self-consistent sources
(Physical applications: hydrodynamics, plasma, solid state physics)
KdV case: capillary-gravity waves (Mel'nikov, 1989,...) NLS case: electrostatic \& acoustic wave (Leon, 1991,...)
KP case, modified Manakov case...

Background

- Soliton equation with self-consistent sources (Physical applications: hydrodynamics, plasma, solid state physics) KdV case: capillary-gravity waves (Mel'nikov, 1989,...) NLS case: electrostatic \& acoustic wave (Leon, 1991,...)
KP case, modified Manakov case...
- Integration of soliton equation with sources

Inverse scattering method (Mel'nikov, 1990; Lin, Zeng 2001...) Matrix theory (Mel'nikov, 1989)
$\bar{\partial}$-method (Doktorov, Shchesnovich, 1996)
Darboux transformation (binary) (Zeng,Ma,Shao,2001; ...)
Hirota method (Matsuno,1991; Hu,1991; Chen, Zhang,2003,...)
Hirota method: source generalization (Hu,Wang, Gegenhasi,2006,...)

KdV \& KdV equation with sources (KdVES): KdV:

$$
u_{t}=-\left(6 u u_{x}+u_{x x x}\right)
$$

KdV \& KdV equation with sources (KdVES): KdV:

$$
u_{t}=-\left(6 u u_{x}+u_{x x x}\right) .
$$

KdVES (Mel'nikov, 1988):

$$
\begin{gathered}
u_{t}=-\left(6 u u_{x}+u_{x x x}\right)-2 \frac{\partial}{\partial x} \sum_{j=1}^{N} \phi_{j}^{2}, \\
\phi_{j, x x}+\left(\lambda_{j}+u\right) \phi_{j}=0, \quad j=1, \cdots, N
\end{gathered}
$$

Restricted flows and KdV hierarchy with sources

For N distinct $\lambda_{j}, j=1, \ldots, N$, the high-order restricted flows of the KdV hierarchy (for $n=0,1, \cdots$) is defined as

$$
\frac{\delta H_{n}}{\delta u}-2 \sum_{j=1}^{N} \frac{\delta \lambda_{j}}{\delta u}=0, \quad \phi_{j, x x}+\left(\lambda_{j}+u\right) \phi_{j}=0, \quad \frac{\delta \lambda_{j}}{\delta u}=\phi_{j}^{2}, \quad j=1, \cdots, N
$$

Restricted flows and KdV hierarchy with sources

For N distinct $\lambda_{j}, j=1, \ldots, N$, the high-order restricted flows of the KdV hierarchy (for $n=0,1, \cdots$) is defined as

$$
\frac{\delta H_{n}}{\delta u}-2 \sum_{j=1}^{N} \frac{\delta \lambda_{j}}{\delta u}=0, \quad \phi_{j, x x}+\left(\lambda_{j}+u\right) \phi_{j}=0, \quad \frac{\delta \lambda_{j}}{\delta u}=\phi_{j}^{2}, \quad j=1, \cdots, N
$$

The KdV hierarchy with self-consistent sources (KdVHWS) is
$u_{t_{n}}=D\left[\frac{\delta H_{n}}{\delta u}-2 \sum_{j=1}^{N} \frac{\delta \lambda_{j}}{\delta u}\right], \quad \phi_{j, x x}+\left(\lambda_{j}+u\right) \phi_{j}=0, \quad \frac{\delta \lambda_{j}}{\delta u}=\phi_{j}^{2}, \quad j=1, \cdots, N$.

Restricted flows and KdV hierarchy with sources

For N distinct $\lambda_{j}, j=1, \ldots, N$, the high-order restricted flows of the KdV hierarchy (for $n=0,1, \cdots$) is defined as

$$
\frac{\delta H_{n}}{\delta u}-2 \sum_{j=1}^{N} \frac{\delta \lambda_{j}}{\delta u}=0, \quad \phi_{j, x x}+\left(\lambda_{j}+u\right) \phi_{j}=0, \quad \frac{\delta \lambda_{j}}{\delta u}=\phi_{j}^{2}, \quad j=1, \cdots, N
$$

The KdV hierarchy with self-consistent sources (KdVHWS) is
$u_{t_{n}}=D\left[\frac{\delta H_{n}}{\delta u}-2 \sum_{j=1}^{N} \frac{\delta \lambda_{j}}{\delta u}\right], \quad \phi_{j, x x}+\left(\lambda_{j}+u\right) \phi_{j}=0, \quad \frac{\delta \lambda_{j}}{\delta u}=\phi_{j}^{2}, \quad j=1, \cdots, N$.
For $n=1$, we have the KdV equation with sources (KdVES)

$$
\begin{gathered}
u_{t_{1}}=-\left(6 u u_{x}+u_{x x x}\right)-2 \frac{\partial}{\partial x} \sum_{j=1}^{N} \phi_{j}^{2} \\
\phi_{j, x x}+\left(\lambda_{j}+u\right) \phi_{j}=0, \quad j=1, \cdots, N .
\end{gathered}
$$

Solving KdV hierarchy with sources by inverse scattering method (ISM)

The initial-value problem of the KdVHWS

Assume $u(x, t), \phi_{j}(x, t), j=1, \ldots, N$, vanish rapidly as $|x| \rightarrow \infty$,
(a) $u_{0}(x)$ satisfies: $\int_{-\infty}^{\infty}\left(\left|x u_{0}(x)\right|+\sum_{j=0}^{2 n+1}\left|u_{0}^{(j)}(x)\right|\right) d x<\infty$;
(b) the Schrödinger equation

$$
\psi_{x x}+\left(\lambda+u_{0}(x)\right) \psi=0
$$

has exactly N distinct discrete eigenvalues as

$$
\lambda_{j}=\left(i k_{j}\right)^{2}=-k_{j}^{2}, \quad \text { where } k_{j}>0, \quad j=1, \cdots, N
$$

The initial-value problem of the KdVHWS

Assume $u(x, t), \phi_{j}(x, t), j=1, \ldots, N$, vanish rapidly as $|x| \rightarrow \infty$, (a) $u_{0}(x)$ satisfies: $\int_{-\infty}^{\infty}\left(\left|x u_{0}(x)\right|+\sum_{j=0}^{2 n+1}\left|u_{0}^{(j)}(x)\right|\right) d x<\infty$;
(b) the Schrödinger equation

$$
\psi_{x x}+\left(\lambda+u_{0}(x)\right) \psi=0
$$

has exactly N distinct discrete eigenvalues as

$$
\lambda_{j}=\left(i k_{j}\right)^{2}=-k_{j}^{2}, \quad \text { where } k_{j}>0, \quad j=1, \cdots, N
$$

Let $\beta_{j}(t), j=1, \ldots, N$, be arbitrary continuous function of t. Using the inverse scattering method, we shall point out the way of constructing the solution $u=u(x, t), \phi_{j}=\phi_{j}(x, t), j=1, \ldots, N$, of KdV hierarchy with sources such that

$$
u(x, 0)=u_{0}(x), \quad \frac{1}{8} \int_{-\infty}^{\infty} \phi_{j}^{2}(x, t) d x=\beta_{j}(t), \quad j=1, \cdots, N
$$

Definition of the scattering data

Denote Jost solutions of Schrödinger equation $\left(\lambda=k^{2}\right)$ as

$$
\begin{aligned}
f^{-}(x, k, t) \sim e^{-i k x}, & x \rightarrow-\infty \\
f^{+}(x, k, t) \sim e^{i k x}, & x \rightarrow+\infty
\end{aligned}
$$

The scattering coefficients for $k \in(-\infty, \infty), k \neq 0$, as

$$
f^{-}(x, k, t)=a(k, t) f^{+}(x,-k, t)+b(k, t) f^{+}(x, k, t)
$$

Suppose

$$
f^{-}\left(x, i k_{j}, t\right)=\widetilde{C}_{j}(t) f^{+}\left(x, i k_{j}, t\right), \quad j=1, \cdots, N
$$

The evolution of scattering data

Using the auxiliary linear problems for KdVHWS, we get the evolution of scattering data.
The evolution of scattering coefficients:

$$
\frac{\partial a}{\partial t}=0, \quad \frac{\partial b}{\partial t}=8 i k^{2 n+1} b
$$

The evolution of discrete spectrum:

$$
\frac{d k_{j}}{d t}=0, \quad j=1, \cdots, N
$$

The evolution of normalization constants:

$$
\frac{\partial \widetilde{C}_{j}}{\partial t}=8\left[(-1)^{n+1} k_{j}^{2 n+1}+\beta_{j}(t)\right] \widetilde{C}_{j}, \quad j=1, \cdots, N
$$

(Lin, Zeng Ma, 2001)

Solving the initial-value problem of KdVHWS

By solving the Gel'fand-Levitan-Marchenko equation

$$
K(x, y)+F(x+y)+\int_{x}^{\infty} K(x, s) F(s+y) d s=0, \quad y>x
$$

with

$$
\begin{gathered}
F(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{b(k)}{a(k)} e^{i k x} d k+\sum_{j=1}^{N} \bar{c}_{j}^{2}(t) e^{-k_{j} x} \\
\bar{c}_{j}^{2}(t)=-i \widetilde{C}_{j}(t)\left[\frac{\partial a}{\partial k}\left(i k_{j}\right)\right]^{-1}, \quad j=1, \cdots, N
\end{gathered}
$$

one can get the solution to the initial-value problem of KdVHWS:

$$
\begin{gathered}
u(x, t)=2 \frac{d}{d x} K(x, x) \\
\phi_{j}(x, t)=2 \sqrt{2 \beta_{j}(t)} \bar{c}_{j}(t)\left(e^{-k_{j} x}+\int_{x}^{\infty} K(x, s) e^{-k_{j} s} d s\right), \quad j=1, \cdots, N,
\end{gathered}
$$

Soliton solutions of the KdVES

 KdVES:$$
\begin{gathered}
u_{t}=-\left(6 u u_{x}+u_{x x x}\right)-2 \frac{\partial}{\partial x} \sum_{j=1}^{N} \phi_{j}^{2}, \\
\phi_{j, x x}+\left(\lambda_{j}+u\right) \phi_{j}=0, \quad j=1, \cdots, N .
\end{gathered}
$$

one-soliton solution of KdVES with $N=1, \lambda_{1}=\left(i k_{1}\right)^{2}$: (discrete eigenvalues: $i k_{1}$; initial normalization const.: $\bar{c}_{1}^{2}(0)$)

$$
\begin{gathered}
u(x, t)=2 k_{1}^{2} \operatorname{sech}^{2}\left(k_{1} x-4 k_{1}^{3} t-4 \int_{0}^{t} \beta_{1}(z) d z+x_{0}\right) \\
\phi_{1}(x, t)=2 \sqrt{k_{1} \beta_{1}(t)} \operatorname{sech}\left(k_{1} x-4 k_{1}^{3} t-4 \int_{0}^{t} \beta_{1}(z) d z+x_{0}\right),
\end{gathered}
$$

where $x_{0}=\log \frac{\sqrt{2 k_{1}}}{\bar{c}_{1}(0)}$.
(Lin, Zeng Ma, 2001)

2-soliton solution of KdVES with $N=2, \lambda_{1}=-4, \lambda_{2}=-1$: (discrete eigenvalues: $2 i$, i; initial normalization const.: 12, 6)

$$
\begin{gathered}
u=\frac{12\left\{3+4 \cosh \left[2 x-8 t-8 \int_{0}^{t} \beta_{2}(z) d z\right]+\cosh \left[4 x-64 t-8 \int_{0}^{t} \beta_{1}(z) d z\right]\right\}}{\Delta^{2}}, \\
\phi_{1}=4 \sqrt{6 \beta_{1}(t)} \frac{\cosh \left[x-4 t-4 \int_{0}^{t} \beta_{2}(z) d z\right]}{\Delta}, \\
\phi_{2}=4 \sqrt{3 \beta_{2}(t)} \frac{\sinh \left[2 x-32 t-4 \int_{0}^{t} \beta_{1}(z) d z\right]}{\Delta}, \\
\Delta=\cosh \left[3 x-36 t-4 \int_{0}^{t}\left(\beta_{1}(z)+\beta_{2}(z)\right) d z\right]+3 \cosh \left[x-28 t-4 \int_{0}^{t}\left(\beta_{1}(z)-\beta_{2}(z)\right) d z\right] . \\
\quad \quad \text { Lin, Zeng Ma, 2001)}
\end{gathered}
$$

Varieties of dynamics of soliton solutions

2 -soliton solution $u(x, t)$ of KdVES with $\beta_{1}(z)=1, \beta_{2}(z)=9$,
the soliton with smaller amplitude may propagate faster!

(Lin, Zeng Ma, 2001)

Solving KdV equation with sources by Darboux transformation (DT)

(Two kinds of DT's)

Recall: Darboux transformation for KdV

 KdV:$$
u_{t_{1}}=-\left(6 u u_{x}+u_{x x x}\right)
$$

Lax pair for KdV:

$$
\begin{gathered}
\frac{\partial^{2}}{\partial x^{2}} \Psi+(\lambda+u) \Psi=0 \\
\frac{\partial}{\partial t_{1}} \Psi=u_{x} \Psi+(4 \lambda-2 u) \Psi_{x}
\end{gathered}
$$

Recall: Darboux transformation for KdV

KdV:

$$
u_{t_{1}}=-\left(6 u u_{x}+u_{x x x}\right)
$$

Lax pair for KdV:

$$
\begin{gathered}
\frac{\partial^{2}}{\partial x^{2}} \Psi+(\lambda+u) \Psi=0 \\
\frac{\partial}{\partial t_{1}} \Psi=u_{x} \Psi+(4 \lambda-2 u) \Psi_{x}
\end{gathered}
$$

Darboux transformation for KdV:
If Ψ and u satisfy the Lax pair for KdV, f and u satisfy the Lax pair for $K d V$ with $\lambda=\lambda_{1}$ $\Rightarrow \widetilde{\Psi}$ and \widetilde{u} satisfy the Lax pair for KdV, where

$$
\widetilde{\Psi} \equiv \Psi_{x}-\frac{f_{x}}{f} \Psi=\frac{1}{f}\left|\begin{array}{cc}
f & \Psi \\
f_{x} & \Psi_{x}
\end{array}\right|, \quad \widetilde{u} \equiv u+2 \partial_{x}^{2} \ln f
$$

Wronskian determinant

Given functions $g_{1}(x), g_{1}(x), \ldots, g_{m}(x)$, define Wronskian determinant $W\left(g_{1}, \ldots, g_{m}\right)$ as

$$
W\left(g_{1}, g_{2}, \ldots, g_{m}\right)=\left|\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{m} \\
g_{1, x} & g_{2, x} & \cdots & g_{m, x} \\
\cdots & \cdots & \cdots & \cdots \\
\partial_{x}^{m-1} g_{1} & \partial_{x}^{m-1} g_{2} & \cdots & \partial_{x}^{m-1} g_{m}
\end{array}\right| .
$$

KdVES \& its auxiliary linear problems
$K d V$ equation with sources (KdVES):

$$
\begin{gathered}
u_{t_{1}}=-\left(6 u u_{x}+u_{x x x}\right)-2 \frac{\partial}{\partial x} \sum_{j=1}^{N} \phi_{j}^{2} \\
\phi_{j, x x}+\left(\lambda_{j}+u\right) \phi_{j}=0, \quad j=1, \cdots, N .
\end{gathered}
$$

The auxiliary linear problems for KdVES:

$$
\begin{gathered}
\Psi_{x x}+(\lambda+u) \Psi=0 \\
\Psi_{t_{1}}=u_{x} \Psi+(4 \lambda-2 u) \Psi_{x}+\sum_{j=1}^{N} \frac{1}{\lambda-\lambda_{j}} \phi_{j}\left(\phi_{j, x} \Psi-\phi_{j} \Psi_{x}\right)
\end{gathered}
$$

Darboux Transformation for KdV with sources

If $u, \phi_{1}, \ldots, \phi_{N}$ is a solution of KdVES, Ψ satisfy

$$
\Psi_{x x}+(\lambda+u) \Psi=0
$$

$$
\Psi_{t_{1}}=u_{x} \Psi+(4 \lambda-2 u) \Psi_{x}+\sum_{j=1}^{N} \frac{1}{\lambda-\lambda_{j}} \phi_{j}\left(\phi_{j, x} \Psi-\phi_{j} \Psi_{x}\right)
$$

f and g are two solutions of the above linear problems with
$\lambda=\lambda_{N+1}$, and $W(f, g) \neq 0$
\Rightarrow Define $S \equiv f+g$,

$$
\begin{aligned}
& \widetilde{\psi}=\frac{W(S, \psi)}{S}, \quad \widetilde{u}=u+2 \partial_{x}^{2} \ln S \\
& \widetilde{\phi}_{j}=\frac{1}{\sqrt{\lambda_{j}-\lambda_{N+1}}} \frac{W\left(S, \phi_{j}\right)}{S}, \quad j=1, \ldots, N,
\end{aligned}
$$

satisfy the auxiliary linear problems for KdVES

$$
\widetilde{\Psi}_{x x}+(\lambda+\widetilde{u}) \widetilde{\Psi}=0
$$

$$
\widetilde{\Psi}_{t_{1}}=\widetilde{u}_{x} \widetilde{\Psi}+(4 \lambda-2 \widetilde{u}) \widetilde{\Psi}_{x}+\sum_{j=1}^{N} \frac{1}{\lambda-\lambda_{j}} \widetilde{\phi}_{j}\left(\widetilde{\phi}_{j, x} \widetilde{\Psi}-\widetilde{\phi}_{j} \widetilde{\Psi}_{x}\right)
$$

Darboux Transf. (DT-I) for KdV with sources

If $u, \phi_{1}, \ldots, \phi_{N}$ is a solution of KdVES, Ψ satisfy

$$
\Psi_{x x}+(\lambda+u) \Psi=0
$$

$$
\Psi_{t_{1}}=u_{x} \Psi+(4 \lambda-2 u) \Psi_{x}+\sum_{j=1}^{N} \frac{1}{\lambda-\lambda_{j}} \phi_{j}\left(\phi_{j, x} \Psi-\phi_{j} \Psi_{x}\right)
$$

f and g are two solutions of the above linear problems with $\lambda=\lambda_{N+1}$, and $W(f, g) \neq 0$
\Rightarrow Define $S_{S} \equiv C(t) f+g, \quad(C(t)$ is differentiable)

$$
\widetilde{\psi}=\frac{W(S, \bar{\psi})}{S}, \quad \widetilde{u}=u+2 \partial_{x}^{2} \ln S
$$

$$
\tilde{\phi}_{j}=\frac{1}{\sqrt{\lambda_{j}-\lambda_{N+1}}} \frac{W\left(S, \phi_{j}\right)}{S}, \quad j=1, \ldots, N, \quad \tilde{\phi}_{N+1}=\sqrt{\frac{C_{t}}{W(f, g)} \frac{W(S, f)}{S}},
$$

satisfy the auxiliary linear problems for KdVES

$$
\begin{aligned}
& \widetilde{\Psi}_{x x}+(\lambda+\widetilde{u}) \widetilde{\Psi}=0 \\
& \widetilde{\Psi}_{t_{1}}=\widetilde{u}_{x} \widetilde{\Psi}+(4 \lambda-2 \widetilde{u}) \widetilde{\Psi}_{x}+\sum_{j=1}^{N+1} \frac{1}{\lambda-\lambda_{j}} \widetilde{\phi}_{j}\left(\widetilde{\phi}_{j, x} \widetilde{\Psi}-\widetilde{\phi}_{j} \widetilde{\Psi}_{x}\right) .
\end{aligned}
$$

Darboux Transf. (DT-I) for KdV with sources

If $u, \phi_{1}, \ldots, \phi_{N}$ is a solution of KdVES, Ψ satisfy

$$
\Psi_{x x}+(\lambda+u) \Psi=0
$$

$$
\Psi_{t_{1}}=u_{x} \Psi+(4 \lambda-2 u) \Psi_{x}+\sum_{j=1}^{N} \frac{1}{\lambda-\lambda_{j}} \phi_{j}\left(\phi_{j, x} \Psi-\phi_{j} \Psi_{x}\right)
$$

f and g are two solutions of the above linear problems with $\lambda=\lambda_{N+1}$, and $W(f, g) \neq 0$
\Rightarrow Define $S_{S} \equiv C(t) f+g, \quad(C(t)$ is differentiable)

$$
\widetilde{\psi}=\frac{W(S, \psi)}{S}, \quad \widetilde{u}=u+2 \partial_{x}^{2} \ln S
$$

$$
\tilde{\phi}_{j}=\frac{1}{\sqrt{\lambda_{j}-\lambda_{N+1}}} \frac{W\left(S, \phi_{j}\right)}{S}, \quad j=1, \ldots, N, \quad \tilde{\phi}_{N+1}=\sqrt{\frac{C_{t}}{W(f, g)} \frac{W(S, f)}{S}},
$$

satisfy the auxiliary linear problems for KdVES

$$
\begin{aligned}
& \widetilde{\Psi}_{x x}+(\lambda+\widetilde{u}) \widetilde{\Psi}=0 \\
& \widetilde{\Psi}_{t_{1}}=\widetilde{u}_{x} \widetilde{\Psi}+(4 \lambda-2 \widetilde{u}) \widetilde{\Psi}_{x}+\sum_{j=1}^{N+1} \frac{1}{\lambda-\lambda_{j}} \widetilde{\phi}_{j}\left(\widetilde{\phi}_{j, x} \widetilde{\Psi}-\widetilde{\phi}_{j} \widetilde{\Psi}_{x}\right) .
\end{aligned}
$$

It's a non-auto-Bäcklund transformation between KdVES's.
(Lin, Zeng, 2006)

Soliton solution obtained by DT-I

The KdVES with $N=1$ and $\lambda_{1}=0$ has the following solution

$$
u=0, \quad \phi_{1}=\eta(t)
$$

With the above u and ϕ_{1}, we take two solutions of the auxiliary linear problems for KdVES with $\lambda=-k^{2}$ (where $k>0$) as

$$
f=\exp (k x-a(t)), \quad g=\exp (-k x+a(t)), \quad \frac{d a}{d t}=4 k^{3}-\frac{\eta(t)^{2}}{k}
$$

Then use the DT-I with $C(t)=\exp (-2 z(t))$, where $z(t)$ is a differentiable function of t, we get a solution of the KdVES with $N=2, \lambda_{1}=0, \lambda_{2}=-k^{2}$,

$$
\widetilde{u}=2 k^{2} \operatorname{sech}^{2}(k x-a(t)-z(t)), \quad \widetilde{\phi}_{1}=-\eta(t) \tanh (k x-a(t)-z(t))
$$

$$
\tilde{\phi}_{2}=\sqrt{k \frac{d z}{d t}} \operatorname{sech}(k x-a(t)-z(t))
$$

Rational solution obtained by DT-I

The KdVES with $N=0$ has a trivial solution

$$
u=0
$$

Take two solutions of the auxiliary linear problems for KdVES with $u=0$ and $\lambda=0$ as follows

$$
f=1, \quad g=x
$$

then use the DT-I for KdVES, we get a rational solution of the KdVES with $N=1, \lambda_{1}=0$,

$$
\widetilde{u}=\frac{-2}{(x+C(t))^{2}}, \quad \tilde{\phi}_{1}=\frac{-\sqrt{C_{t}}}{(x+C(t))}
$$

Darboux Transf. (DT-II) for KdV with sources

If $u, \phi_{1}, \ldots, \phi_{N}$ is a solution of KdVES, Ψ satisfy:

$$
\Psi_{x x}+(\lambda+u) \Psi=0
$$

$$
\Psi_{t_{1}}=u_{x} \Psi+(4 \lambda-2 u) \Psi_{x}+\sum_{j=1}^{N} \frac{1}{\lambda-\lambda_{j}} \phi_{j}\left(\phi_{j, x} \Psi-\phi_{j} \Psi_{x}\right)
$$

$f\left(x, t, \lambda_{N+1}\right)$ and $g\left(x, t, \lambda_{N+1}\right)$ are two solutions of the above linear problems with $\lambda=\lambda_{N+1}$, and $W(f, g) \neq 0$
\Rightarrow Define $T \equiv C(t) f\left(x, t, \lambda_{N+1}\right)+\partial_{\lambda_{N+1}} g\left(x, t, \lambda_{N+1}\right)$,

$$
\begin{aligned}
& \widetilde{\Psi}=\frac{W(g, T, \Psi)}{W(g, T)}, \quad \widetilde{u}=u+2 \partial_{x}^{2} \ln W(g, T), \\
& \widetilde{\phi}_{j}=\frac{1}{\lambda_{j}-\lambda_{N+1}} \frac{W\left(g, T, \phi_{j}\right)}{W(g, T)}, \quad j=1, \ldots, N, \quad \widetilde{\phi}_{N+1}=\sqrt{\frac{C_{t}}{W(f, g)}} \frac{W(g, T, f)}{W(g, T)}
\end{aligned}
$$

satisfy the auxiliary linear problems for KdVES

$$
\begin{aligned}
& \widetilde{\Psi}_{x x}+(\lambda+\widetilde{u}) \widetilde{\Psi}=0 \\
& \widetilde{\Psi}_{t_{1}}=\widetilde{u}_{x} \widetilde{\Psi}+(4 \lambda-2 \widetilde{u}) \widetilde{\Psi}_{x}+\sum_{j=1}^{N+1} \frac{1}{\lambda-\lambda_{j}} \widetilde{\phi}_{j}\left(\widetilde{\phi}_{j, x} \widetilde{\Psi}-\widetilde{\phi}_{j} \widetilde{\Psi}_{x}\right) .
\end{aligned}
$$

(Lin, Zeng, 2006)

Positon solution obtained by DT-II

The KdVES with $N=1$ and $\lambda_{1}=0$ has a solution

$$
u=0, \quad \phi_{1}=\sqrt{\frac{d \eta(t)}{d t}} .
$$

With the above u and ϕ_{1}, we take two solutions of the auxiliary linear problems for KdVES with $\lambda=k^{2}(k>0)$ as

$$
f=\cos \Theta, \quad g=\sin \Theta, \quad \Theta=k x+4 k^{3} t-\frac{\eta(t)}{k}+b(k)
$$

where $b(k)$ is a differentiable function of k. Using the DT-II, we get a solution of KdVES with $N=2, \lambda_{1}=0, \lambda_{2}=k^{2}(k>0)$,

$$
\begin{gathered}
\widetilde{u}=\frac{32 k^{2}\left(2 k^{2} \gamma \cos \Theta-\sin \Theta\right) \sin \Theta}{\left(4 k^{2} \gamma-\sin (2 \Theta)\right)^{2}} \\
\widetilde{\phi}_{1}=\frac{-\sqrt{\eta_{t}}\left(4 k^{2} \gamma+\sin (2 \Theta)\right)}{4 k^{2} \gamma-\sin (2 \Theta)}, \quad \widetilde{\phi}_{2}=\frac{4 k \sqrt{k C_{t}} \sin \Theta}{4 k^{2} \gamma-\sin (2 \Theta)}
\end{gathered}
$$

where $\gamma=C(t)+\frac{1}{2 k} \partial_{k} \Theta$.

Negaton solution obtained by DT-II

The KdVES with $N=1$ and $\lambda_{1}=0$ has a solution

$$
u=0, \quad \phi_{1}=\sqrt{\frac{d \eta(t)}{d t}} .
$$

With the above u and ϕ_{1}, we take two solutions of the auxiliary linear problems for KdVES with $\lambda=-k^{2}$ (where $k>0$) as

$$
f=\cosh \Theta, \quad g=\sinh \Theta, \quad \Theta=k x-4 k^{3} t+\frac{\eta(t)}{k}+b(k)
$$

where $b(k)$ is a differentiable function of k. Using DT-II, we get a solution of KdVES with $N=2, \lambda_{1}=0, \lambda_{2}=-k^{2},(k>0)$,

$$
\widetilde{u}=\frac{8 k^{2}\left(2 k^{2} \gamma \cosh \Theta+\sinh \Theta\right) \sinh \Theta}{\left(2 k^{2} \gamma+\sinh \Theta \cosh \Theta\right)^{2}}
$$

$\widetilde{\phi}_{1}=\frac{\sqrt{\eta_{t}}\left(-2 k^{2} \gamma+\sinh \Theta \cosh \Theta\right)}{2 k^{2} \gamma+\sinh \Theta \cosh \Theta}$,

$$
\tilde{\phi}_{2}=\frac{2 k \sqrt{k C_{t}} \sinh \Theta}{2 k^{2} \gamma+\sinh \Theta \cosh \Theta}
$$

where $\gamma=C(t)-\frac{1}{2 k} \partial_{k} \Theta$.

KP equation with self-consistent sources

KP equation with self-consistent sources

The 1st type: (Mel'nikov, Zeng, Hu, Zhang, Deng, ...)

$$
\begin{array}{r}
\left(4 u_{t}-12 u u_{x}-u_{x x x}\right)_{x}-3 u_{y y}+4 \sum_{i=1}^{N}\left(q_{i} r_{i}\right)_{x x}=0, \quad u:=u_{1} \\
q_{i, y}=q_{i, x x}+2 u q_{i}, \quad r_{i, y}=-r_{i, x x}-2 u r_{i}, \quad i=1, \ldots, N .
\end{array}
$$

KP equation with self-consistent sources

The 1st type: (Mel'nikov, Zeng, Hu, Zhang, Deng, ...)

$$
\begin{array}{r}
\left(4 u_{t}-12 u u_{x}-u_{x x x}\right)_{x}-3 u_{y y}+4 \sum_{i=1}^{N}\left(q_{i} r_{i}\right)_{x x}=0, \quad u:=u_{1} \\
q_{i, y}=q_{i, x x}+2 u q_{i}, \quad r_{i, y}=-r_{i, x x}-2 u r_{i}, \quad i=1, \ldots, N .
\end{array}
$$

The 2nd type: (Mel'nikov, Hu, Wang, ...)

$$
\begin{array}{r}
4 u_{t}-12 u u_{x}-u_{x x x}-3 D^{-1} u_{y y}=3 \sum_{i=1}^{N}\left[q_{i, x x} r_{i}-q_{i} r_{i, x x}+\left(q_{i} r_{i}\right)_{y}\right], \\
q_{i, t}=q_{i, x x x}+3 u q_{i, x}+\frac{3}{2} q_{i} D^{-1} u_{y}+\frac{3}{2} q_{i} \sum_{j=1}^{N} q_{j} r_{j}+\frac{3}{2} u_{x} q_{i}, \\
r_{i, t}=r_{i, x x x}+3 u r_{i, x}-\frac{3}{2} r_{i} D^{-1} u_{y}-\frac{3}{2} r_{i} \sum_{j=1}^{N} q_{j} r_{j}+\frac{3}{2} u_{x} r_{i},
\end{array}
$$

KP equation with self-consistent sources

The 1st type: (Mel'nikov, Zeng, Hu, Zhang, Deng, ...)

$$
\begin{gathered}
\left(4 u_{t}-12 u u_{x}-u_{x x x}\right)_{x}-3 u_{y y}+4 \sum_{i=1}^{N}\left(q_{i} r_{i}\right)_{x x}=0, \quad u:=u_{1} \\
q_{i, y}=q_{i, x x}+2 u q_{i}, \quad r_{i, y}=-r_{i, x x}-2 u r_{i}, \quad i=1, \ldots, N .
\end{gathered}
$$

The 2nd type: (Mel'nikov, Hu, Wang, ...)

$$
\begin{array}{r}
4 u_{t}-12 u u_{x}-u_{x x x}-3 D^{-1} u_{y y}=3 \sum_{i=1}^{N}\left[q_{i, x x} r_{i}-q_{i} r_{i, x x}+\left(q_{i} r_{i}\right)_{y}\right] \\
q_{i, t}=q_{i, x x x}+3 u q_{i, x}+\frac{3}{2} q_{i} D^{-1} u_{y}+\frac{3}{2} q_{i} \sum_{j=1}^{N} q_{j} r_{j}+\frac{3}{2} u_{x} q_{i} \\
r_{i, t}
\end{array}=r_{i, x x x}+3 u r_{i, x}-\frac{3}{2} r_{i} D^{-1} u_{y}-\frac{3}{2} r_{i} \sum_{j=1}^{N} q_{j} r_{j}+\frac{3}{2} u_{x} r_{i},
$$

Problem: How to generate these two systems in a systematical way?

KP equation with self-consistent sources

The 1st type: (Mel'nikov, Zeng, Hu, Zhang, Deng, ...)

$$
\begin{array}{r}
\left(4 u_{t}-12 u u_{x}-u_{x x x}\right)_{x}-3 u_{y y}+4 \sum_{i=1}^{N}\left(q_{i} r_{i}\right)_{x x}=0, \quad u:=u_{1} \\
q_{i, y}=q_{i, x x}+2 u q_{i}, \quad r_{i, y}=-r_{i, x x}-2 u r_{i}, \quad i=1, \ldots, N .
\end{array}
$$

The 2nd type: (Mel'nikov, Hu, Wang, ...)

$$
\begin{array}{r}
4 u_{t}-12 u u_{x}-u_{x x x}-3 D^{-1} u_{y y}=3 \sum_{i=1}^{N}\left[q_{i, x x} r_{i}-q_{i} r_{i, x x}+\left(q_{i} r_{i}\right)_{y}\right], \\
q_{i, t}=q_{i, x x x}+3 u q_{i, x}+\frac{3}{2} q_{i} D^{-1} u_{y}+\frac{3}{2} q_{i} \sum_{j=1}^{N} q_{j} r_{j}+\frac{3}{2} u_{x} q_{i}, \\
r_{i, t}=r_{i, x x x}+3 u r_{i, x}-\frac{3}{2} r_{i} D^{-1} u_{y}-\frac{3}{2} r_{i} \sum_{j=1}^{N} q_{j} r_{j}+\frac{3}{2} u_{x} r_{i},
\end{array}
$$

Problem: How to generate these two systems in a systematical way?
\Longrightarrow constructing a new extended KP hierarchy (KP hierarchy with selfconsistent sources, KPHWS)
(Liu, Zeng, Lin, 2008)

The KP hierarchy with sources (KPHWS)

The KP hierarchy

The KP hierarchy

$$
\partial_{t_{n}} L=\left[B_{n}, L\right], \quad B_{n}=L_{+}^{n}
$$

where $L=\partial+\sum_{i=1}^{\infty} u_{i} \partial^{-i}=\partial+u_{1} \partial^{-1}+u_{2} \partial^{-2}+\ldots$.

The KP hierarchy

The KP hierarchy

$$
\partial_{t_{n}} L=\left[B_{n}, L\right], \quad B_{n}=L_{+}^{n}
$$

where $L=\partial+\sum_{i=1}^{\infty} u_{i} \partial^{-i}=\partial+u_{1} \partial^{-1}+u_{2} \partial^{-2}+\ldots$.
The commutativity of $\partial_{t_{n}}$ flows gives the zero-curvature equations of KP hierarchy

$$
B_{n, t_{k}}-B_{k, t_{n}}+\left[B_{n}, B_{k}\right]=0
$$

The (adjoint) wave function

The wave function and the adjoint one satisfy

$$
\begin{aligned}
L w & =z w, & \frac{\partial w}{\partial t_{n}} & =B_{n} w \\
L^{*} w^{*} & =z w^{*}, & \frac{\partial w^{*}}{\partial t_{n}} & =-\left(B_{n}\right)^{*} w^{*}
\end{aligned}
$$

The (adjoint) wave function

The wave function and the adjoint one satisfy

$$
\begin{aligned}
L w & =z w, & \frac{\partial w}{\partial t_{n}} & =B_{n} w \\
L^{*} w^{*} & =z w^{*}, & \frac{\partial w^{*}}{\partial t_{n}} & =-\left(B_{n}\right)^{*} w^{*}
\end{aligned}
$$

It can be proved that (see, e.g., Dickey)

$$
T(z)_{-} \equiv \sum_{i \in \mathbb{Z}} L_{-}^{i} z^{-i-1}=w \partial^{-1} w^{*}
$$

Introducing a new vector field

 Define a new variable τ_{k} whose vector field is$$
\partial_{\tau_{k}}=\partial_{t_{k}}-\sum_{i=1}^{N} \sum_{s \geq 0} \zeta_{i}^{-s-1} \partial_{t_{s}}
$$

where ζ_{i} 's are arbitrary distinct non-zero parameters.

Introducing a new vector field

Define a new variable τ_{k} whose vector field is

$$
\partial_{\tau_{k}}=\partial_{t_{k}}-\sum_{i=1}^{N} \sum_{s \geq 0} \zeta_{i}^{-s-1} \partial_{t_{s}}
$$

where ζ_{i} 's are arbitrary distinct non-zero parameters.

Then it can be proved that

$$
L_{\tau_{k}}=\left[B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}, L\right]
$$

where $q_{i}=w\left(x, \bar{t} ; \zeta_{i}\right), r_{i}=w^{*}\left(x, \bar{t} ; \zeta_{i}\right), \bar{t}=\left(t_{1}, t_{2}, t_{3}, \ldots\right)$ and

$$
q_{i, t_{n}}=B_{n}\left(q_{i}\right), \quad r_{i, t_{n}}=-B_{n}^{*}\left(r_{i}\right), \quad i=1, \cdots, N
$$

KP hierarchy with sources (KPHWS)

The Lax type equations

$$
L_{t_{n}}=\left[B_{n}, L\right], \quad L_{\tau_{k}}=\left[B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}, L\right], \quad(n \neq k)
$$

give the KPHWS

$$
\begin{gathered}
B_{n, \tau_{k}}-\left(B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right)_{t_{n}}+\left[B_{n}, B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right]=0 \\
q_{i, t_{n}}=B_{n}\left(q_{i}\right), \quad r_{i, t_{n}}=-B_{n}^{*}\left(r_{i}\right), \quad i=1, \cdots, N
\end{gathered}
$$

KP hierarchy with sources (KPHWS)

The Lax type equations

$$
L_{t_{n}}=\left[B_{n}, L\right], \quad L_{\tau_{k}}=\left[B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}, L\right], \quad(n \neq k)
$$

give the KPHWS

$$
\begin{gathered}
B_{n, \tau_{k}}-\left(B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right)_{t_{n}}+\left[B_{n}, B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right]=0 \\
q_{i, t_{n}}=B_{n}\left(q_{i}\right), \quad r_{i, t_{n}}=-B_{n}^{*}\left(r_{i}\right), \quad i=1, \cdots, N
\end{gathered}
$$

The KPHWS admits a Lax representation

$$
\Psi_{\tau_{k}}=\left(B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right)(\Psi), \quad \Psi_{t_{n}}=B_{n}(\Psi)
$$

(Liu, Lin, Zeng, 2008)

Example in the KPHWS:

($n=2, k=3$)
yields the 1st type of KP equation with self-consistent sources

$$
\begin{aligned}
& u_{1, t_{2}}-u_{1, x x}-2 u_{2, x}=0, \\
& 2 u_{1, \tau_{3}}-3 u_{2, t_{2}}-3 u_{1, x, t_{2}}+u_{1, x x x}+3 u_{2, x x}-6 u_{1} u_{1, x}+2 \partial_{x} \sum_{i=1}^{N} q_{i} r_{i}=0, \\
& q_{i, t_{2}}-q_{i, x x}-2 u_{1} q_{i}=0, \\
& r_{i, t_{2}}+r_{i, x x}+2 u_{1} r_{i}=0, \quad i=1, \ldots, N .
\end{aligned}
$$

Example in the KPHWS:

($n=2, k=3$)
yields the 1 st type of KP equation with self-consistent sources

$$
\begin{aligned}
& u_{1, t_{2}}-u_{1, x x}-2 u_{2, x}=0 \\
& 2 u_{1, \tau_{3}}-3 u_{2, t_{2}}-3 u_{1, x, t_{2}}+u_{1, x x x}+3 u_{2, x x}-6 u_{1} u_{1, x}+2 \partial_{x} \sum_{i=1}^{N} q_{i} r_{i}=0, \\
& q_{i, t_{2}}-q_{i, x x}-2 u_{1} q_{i}=0, \\
& r_{i, t_{2}}+r_{i, x x}+2 u_{1} r_{i}=0, \quad i=1, \ldots, N .
\end{aligned}
$$

The Lax representation is (where $u \equiv u_{1}$)

$$
\begin{gathered}
\Psi_{\tau_{3}}=\left(\partial^{3}+3 u \partial+\frac{3}{2} D^{-1} u_{t_{2}}+\frac{3}{2} u_{x}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right)(\Psi) \\
\Psi_{t_{2}}=\left(\partial^{2}+2 u\right)(\Psi)
\end{gathered}
$$

Example in the KPHWS:
 ($n=3, k=2$)

yields the 2 nd type of KP equation with sources

$$
u_{1, \tau_{2}}-u_{1, x x}-2 u_{2, x}+\partial_{x} \sum_{i=1}^{N} q_{i} r_{i}=0
$$

$$
3 u_{2, \tau_{2}}+3 u_{1, x, \tau_{2}}-2 u_{1, t_{3}}-u_{1, x x x}+6 u_{1} u_{1, x}-3 u_{2, x x}+3 \partial_{x} \sum_{i=1}^{N} q_{i, x} r_{i}=0
$$

$$
q_{i, t_{3}}-q_{i, x x x}-3 u_{1} q_{i, x}-3\left(u_{1, x}+u_{2}\right) q_{i}=0
$$

$$
r_{i, t_{3}}-r_{i, x x x}-3 u_{1} r_{i, x}+3 u_{2} r_{i}=0, \quad i=1, \ldots, N
$$

Example in the KPHWS:
 ($n=3, k=2$)

yields the 2 nd type of KP equation with sources
$u_{1, \tau_{2}}-u_{1, x x}-2 u_{2, x}+\partial_{x} \sum_{i=1}^{N} q_{i} r_{i}=0$,
$3 u_{2, \tau_{2}}+3 u_{1, x, \tau_{2}}-2 u_{1, t_{3}}-u_{1, x x x}+6 u_{1} u_{1, x}-3 u_{2, x x}+3 \partial_{x} \sum_{i=1}^{N} q_{i, x} r_{i}=0$,
$q_{i, t_{3}}-q_{i, x x x}-3 u_{1} q_{i, x}-3\left(u_{1, x}+u_{2}\right) q_{i}=0$,
$r_{i, t_{3}}-r_{i, x x x}-3 u_{1} r_{i, x}+3 u_{2} r_{i}=0, \quad i=1, \ldots, N$.
The Lax representation is (where $u \equiv u_{1}$)

$$
\begin{gathered}
\Psi_{\tau_{2}}=\left(\partial^{2}+2 u+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right)(\Psi) \\
\Psi_{t_{3}}=\left(\partial^{3}+3 u \partial+\frac{3}{2} D^{-1} u_{\tau_{2}}+\frac{3}{2} u_{x}+\frac{3}{2} \sum_{i=1}^{N} q_{i} r_{i}\right)(\Psi)
\end{gathered}
$$

t_{n}-reduction of KPHWS:

The t_{n}-reduction is given by

$$
L^{n}=B_{n} \quad \text { or } \quad L_{-}^{n}=0
$$

t_{n}-reduction of KPHWS:

The t_{n}-reduction is given by

$$
L^{n}=B_{n} \quad \text { or } \quad L_{-}^{n}=0
$$

then the KPHWS reduces to the Gelfand-Dickey hierarchy with self-consistent sources

$$
\begin{gathered}
B_{n, \tau_{k}}=\left[\left(B_{n}\right)_{+}^{\frac{k}{n}}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}, B_{n}\right] \\
B_{n}\left(q_{i}\right)=\zeta_{i}^{n} q_{i}, \quad B_{n}^{*}\left(r_{i}\right)=\zeta_{i}^{n} r_{i}, \quad i=1, \cdots, N .
\end{gathered}
$$

t_{n}-reduction of KPHWS:

$n=2, k=3$ gives the 1st type of KdV equation with sources (Mel'nikov, ...)

$$
\begin{aligned}
& u_{1, \tau_{3}}-3 u_{1} u_{1, x}-\frac{1}{4} u_{1, x x x}+\partial_{x} \sum_{i=1}^{N} q_{i} r_{i}=0, \\
& q_{i, x x}+2 u_{1} q_{i}-\zeta^{2} q_{i}=0, \\
& r_{i, x x}+2 u_{1} r_{i}-\zeta^{2} r_{i}=0, \quad i=1, \cdots, N .
\end{aligned}
$$

t_{n}-reduction of KPHWS :

$n=2, k=3$ gives the 1st type of KdV equation with sources (Mel'nikov, ...)

$$
\begin{aligned}
& u_{1, \tau_{3}}-3 u_{1} u_{1, x}-\frac{1}{4} u_{1, x x x}+\partial_{x} \sum_{i=1}^{N} q_{i} r_{i}=0, \\
& q_{i, x x}+2 u_{1} q_{i}-\zeta^{2} q_{i}=0, \\
& r_{i, x x}+2 u_{1} r_{i}-\zeta^{2} r_{i}=0, \quad i=1, \cdots, N
\end{aligned}
$$

The Lax representation is (where $u \equiv u_{1}$)

$$
\begin{aligned}
& \left(\partial^{2}+2 u\right)(\Psi)=\lambda \Psi, \\
& \Psi_{t}=\left(\partial^{3}+3 u \partial+\frac{3}{2} u_{x}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right)(\Psi)
\end{aligned}
$$

t_{n}-reduction of KPHWS :

$n=3, k=2$ gives the 1st type of Boussinesq equation with self-consistent sources

$$
\begin{aligned}
& -2 u_{2, x}-u_{1, x x}+u_{1, \tau_{2}}+\partial_{x} \sum_{i=1}^{N} q_{i} r_{i}=0 \\
& 3 u_{2, \tau_{2}}-3 u_{2, x x}+3 u_{1, x, \tau_{2}}+6 u_{1} u_{1, x}-u_{1, x x x}+3 \partial_{x} \sum_{i=1}^{N} q_{i, x} r_{i}=0 \\
& q_{i, x x x}+3 u_{1} q_{i, x}+3\left(u_{1, x}+u_{2}\right) q_{i}-\zeta^{3} q_{i}=0, \\
& r_{i, x x x}+3 u_{1} r_{i, x}-3 u_{2} r_{i}+\zeta^{3} r_{i}=0, \quad i=1, \cdots, N
\end{aligned}
$$

t_{n}-reduction of KPHWS :

$n=3, k=2$ gives the 1st type of Boussinesq equation with self-consistent sources

$$
\begin{aligned}
& -2 u_{2, x}-u_{1, x x}+u_{1, \tau_{2}}+\partial_{x} \sum_{i=1}^{N} q_{i} r_{i}=0 \\
& 3 u_{2, \tau_{2}}-3 u_{2, x x}+3 u_{1, x, \tau_{2}}+6 u_{1} u_{1, x}-u_{1, x x x}+3 \partial_{x} \sum_{i=1}^{N} q_{i, x} r_{i}=0 \\
& q_{i, x x x}+3 u_{1} q_{i, x}+3\left(u_{1, x}+u_{2}\right) q_{i}-\zeta^{3} q_{i}=0, \\
& r_{i, x x x}+3 u_{1} r_{i, x}-3 u_{2} r_{i}+\zeta^{3} r_{i}=0, \quad i=1, \cdots, N
\end{aligned}
$$

The Lax representation is

$$
\begin{aligned}
& \left(\partial^{3}+3 u_{1} \partial+3 u_{2}+3 u_{1, x}\right)(\Psi)=\lambda \Psi \\
& \Psi_{t}=\left(\partial^{2}+2 u_{1}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right)(\Psi)
\end{aligned}
$$

τ_{k}-reduction of KPHWS:

The τ_{k}-reduction is given by

$$
L^{k}=B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}
$$

τ_{k}-reduction of KPHWS:

The τ_{k}-reduction is given by

$$
L^{k}=B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}
$$

then the KPHWS reduces to the k-constrained KP hierarchy

$$
\begin{gathered}
\left(B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right)_{t_{n}}=\left[\left(B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right)_{+}^{\frac{n}{k}}, B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right] \\
q_{i, t_{n}}=\left(B_{k}+\sum_{j=1}^{N} q_{j} \partial^{-1} r_{j}\right)_{+}^{\frac{n}{k}}\left(q_{i}\right) \\
r_{i, t_{n}}=-\left(B_{k}+\sum_{j=1}^{N} q_{j} \partial^{-1} r_{j}\right)_{+}^{\frac{n}{k} *}\left(r_{i}\right), \quad i=1, \cdots, N
\end{gathered}
$$

τ_{k}-reduction of KPHWS:

$n=3, k=2$ gives the 2nd type of $K d V$ equation with sources (or Yajima-Oikawa equation)

$$
\begin{aligned}
& u_{1, t_{3}}=\frac{1}{4} u_{1, x x x}+3 u_{1} u_{1, x}+\frac{3}{4} \sum_{i=1}^{N}\left(q_{i, x x} r_{i}-q_{i} r_{i, x x}\right), \\
& q_{i, t_{3}}=q_{i, x x x}+3 u_{1} q_{i, x}+\frac{3}{2} u_{1, x} q_{i}+\frac{3}{2} q_{i} \sum_{j=1}^{N} q_{j} r_{j}, \\
& r_{i, t_{3}}=r_{i, x x x}+3 u_{1} r_{i, x}+\frac{3}{2} u_{1, x} r_{i}-\frac{3}{2} r_{i} \sum_{i=1}^{N} q_{j} r_{j}, \quad i=1, \cdots, N .
\end{aligned}
$$

τ_{k}-reduction of KPHWS:

$n=2, k=3$ gives the 2 nd type of Boussinesq equation with sources

$$
\begin{aligned}
& -2 u_{2, x}-u_{1, x x}+u_{1, t_{2}}=0 \\
& 3 u_{2, t_{2}}-3 u_{2, x x}+3 u_{1, x, t_{2}}+6 u_{1} u_{1, x}-u_{1, x x x}-2 \partial_{x} \sum_{i=1}^{N} q_{i} r_{i}=0 \\
& q_{i, t_{2}}=q_{i, x x}+2 u_{1} q_{i}, \\
& r_{i, t_{2}}=-r_{i, x x}-2 u_{1} r_{i}, \quad i=1, \cdots, N
\end{aligned}
$$

Generalized dressing approach for solving the KPHWS

Wronskian determinant:
For a set of functions $\left\{h_{1}, h_{2}, \ldots, h_{N}\right\}$, the Wronskian determinant is defined as

$$
\operatorname{Wr}\left(h_{1}, \cdots, h_{N}\right)=\left|\begin{array}{cccc}
h_{1} & h_{2} & \cdots & h_{N} \\
h_{1}^{(1)} & h_{2}^{(1)} & \cdots & h_{N}^{(1)} \\
\vdots & \vdots & \vdots & \vdots \\
h_{1}^{(N-1)} & h_{2}^{(N-1)} & \cdots & h_{N}^{(N-1)}
\end{array}\right|, \quad h_{i}^{(k)} \equiv \partial^{k}\left(h_{i}\right)
$$

Dressing approach for KP hierarchy For the KP hierarchy

$$
L_{t_{n}}=\left[B_{n}, L\right]
$$

the following formula solves the KP hierarchy

$$
\begin{aligned}
& L=S \partial S^{-1}, \quad S=\frac{1}{\mathrm{Wr}\left(h_{1}, \cdots, h_{N}\right)}\left|\begin{array}{ccccc}
h_{1} & h_{2} & \cdots & h_{N} & 1 \\
h_{1}^{(1)} & h_{2}^{(1)} & \cdots & h_{N}^{(1)} & \partial \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
h_{1}^{(N)} & h_{2}^{(N)} & \cdots & h_{N}^{(N)} & \partial^{N}
\end{array}\right|, \\
& \text { with } h_{i}=f_{i}+\alpha_{i} g_{i}, \quad\left(\alpha_{i} \text { are constants }\right) \\
& \partial_{t_{n}}\left(f_{i}\right)=\partial^{n} f_{i}, \quad \partial_{t_{n}}\left(g_{i}\right)=\partial^{n} g_{i}, \quad i=1, \ldots, N .
\end{aligned}
$$

Dressing approach for KP hierarchy with sources : For the KP hierarchy with sources

$$
L_{t_{n}}=\left[B_{n}, L\right], \quad L_{\tau_{k}}=\left[B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}, L\right]
$$

the following formula solves the KP hierarchy with sources

$$
\begin{gathered}
L=S \partial S^{-1}, \quad S=\frac{1}{\operatorname{Wr}\left(h_{1}, \cdots, h_{N}\right)}\left|\begin{array}{ccccc}
h_{1} & h_{2} & \cdots & h_{N} & 1 \\
h_{1}^{(1)} & h_{2}^{(1)} & \cdots & h_{N}^{(1)} & \partial \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
h_{1}^{(N)} & h_{2}^{(N)} & \cdots & h_{N}^{(N)} & \partial^{N}
\end{array}\right|, \\
q_{i}=-\alpha_{i, \tau_{k}} S\left(g_{i}\right), \quad r_{i}=(-1)^{N-i}\left(\frac{\operatorname{Wr}\left(h_{1}, \cdots, \widehat{h}_{i}, \cdots, h_{N}\right)}{\operatorname{Wr}\left(h_{1}, \cdots, h_{N}\right)}\right), \quad i=1, \ldots, N . \\
\text { with } h_{i}=f_{i}+\alpha_{i}\left(\tau_{k}\right) g_{i}, \quad\left(\alpha_{i}\left(\tau_{k}\right) \text { are differentiable functions }\right) \\
\partial_{t_{n}}\left(f_{i}\right)=\partial^{n} f_{i}, \quad \partial_{t_{n}}\left(g_{i}\right)=\partial^{n} g_{i}, \quad i=1, \ldots, N . \\
\partial_{\tau_{k}\left(f_{i}\right)=\partial^{k} f_{i},} \quad \partial_{\tau_{k} k}\left(g_{i}\right)=\partial^{k} g_{i}, \quad i=1, \ldots, N .
\end{gathered}
$$

Lemmas for proving the dressing formula:
For the $L, S, h_{i}, q_{i}, r_{i}$ given in the dressing formula for the KPHWS, we have

Lemma 1. $S^{-1}=\sum_{i=1}^{N} h_{i} \partial^{-1} r_{i}$.
Lemma 2. $\partial^{-1} r_{i} S$ is a pure differential operator, and

$$
\left(\partial^{-1} r_{i} S\right)\left(h_{j}\right)=\delta_{i j}, \quad 1 \leq i, j \leq N
$$

Lemma 3.

$$
\begin{aligned}
& S_{t_{n}}=-L_{-}^{n} S \\
& S_{\tau_{k}}=-L_{-}^{k} S+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i} S
\end{aligned}
$$

The mKP hierarchy with sources (mKPHWS)

The mKP hierarchy

The mKP hierarchy

$$
\partial_{t_{n}} \widetilde{L}=\left[\widetilde{B}_{n}, \widetilde{L}\right], \quad \widetilde{B}_{n}=\left(\widetilde{L}^{n}\right)_{\geq 1}
$$

$$
\text { where } \widetilde{L}_{L}=\partial+\widetilde{u}_{0}+\widetilde{u}_{1} \partial^{-1}+\widetilde{u}_{2} \partial^{-2}+\cdots
$$

The mKP hierarchy

The mKP hierarchy

$$
\partial_{t_{n}} \widetilde{L}=\left[\widetilde{B}_{n}, \widetilde{L}\right], \quad \widetilde{B}_{n}=\left(\widetilde{L}^{n}\right)_{\geq 1}
$$

where $\widetilde{L}=\partial+\widetilde{u}_{0}+\widetilde{u}_{1} \partial^{-1}+\widetilde{u}_{2} \partial^{-2}+\cdots$.

The commutativity of $\partial_{t_{n}}$ flows gives the zero-curvature equations of mKP hierarchy

$$
\widetilde{B}_{n, t_{m}}-\widetilde{B}_{m, t_{n}}+\left[\widetilde{B}_{n}, \widetilde{B}_{m}\right]=0
$$

The mKP hierarchy

The mKP hierarchy

$$
\partial_{t_{n}} \widetilde{L}=\left[\widetilde{B}_{n}, \widetilde{L}\right], \quad \widetilde{B}_{n}=\left(\widetilde{L}^{n}\right)_{\geq 1}
$$

where $\widetilde{L}=\partial+\widetilde{u}_{0}+\widetilde{u}_{1} \partial^{-1}+\widetilde{u}_{2} \partial^{-2}+\cdots$.

The commutativity of $\partial_{t_{n}}$ flows gives the zero-curvature equations of mKP hierarchy

$$
\widetilde{B}_{n, t_{m}}-\widetilde{B}_{m, t_{n}}+\left[\widetilde{B}_{n}, \widetilde{B}_{m}\right]=0
$$

When $n=2, m=3, \Longrightarrow m K P$ equation:

$$
4 v_{t}-v_{x x x}+6 v^{2} v_{x}-3\left(D^{-1} v_{y y}\right)-6 v_{x}\left(D^{-1} v_{y}\right)=0
$$

where $t:=t_{3}, y:=t_{2}, v:=\widetilde{u}_{0}$.

mKP hierarchy with sources (mKPHWS)

The mKPHWS is constructed as

$$
\begin{aligned}
& \widetilde{L}_{\tau_{k}}=\left[\widetilde{B}_{k}+\sum_{i=1}^{N} \widetilde{q}_{i} \partial^{-1} \widetilde{r}_{i} \partial, \widetilde{L}\right], \\
& \widetilde{L}_{t_{n}}=\left[\widetilde{B}_{n}, \widetilde{L}\right], \quad \forall n \neq k, \\
& \widetilde{q}_{i, t_{n}}=\widetilde{B}_{n}\left(\widetilde{q}_{i}\right), \quad \widetilde{r}_{i, t_{n}}=-\left(\partial \widetilde{B}_{n} \partial^{-1}\right)^{*}\left(\widetilde{r}_{i}\right), \quad i=1, \cdots, N .
\end{aligned}
$$

mKP hierarchy with sources (mKPHWS)

The mKPHWS is constructed as

$$
\begin{aligned}
& \widetilde{L}_{\tau_{k}}=\left[\widetilde{B}_{k}+\sum_{i=1}^{N} \widetilde{q}_{i} \partial^{-1} \widetilde{r}_{i} \partial, \widetilde{L}\right], \\
& \widetilde{L}_{t_{n}}=\left[\widetilde{B}_{n}, \widetilde{L}\right], \quad \forall n \neq k, \\
& \widetilde{q}_{i, t_{n}}=\widetilde{B}_{n}\left(\widetilde{q}_{i}\right), \quad \widetilde{r}_{i, t_{n}}=-\left(\partial \widetilde{B}_{n} \partial^{-1}\right)^{*}\left(\widetilde{r}_{i}\right), \quad i=1, \cdots, N .
\end{aligned}
$$

The mKPHWS admits a Lax representation

$$
\Psi_{t_{n}}=\widetilde{B}_{n}(\Psi), \quad \Psi_{\tau_{k}}=\left(\widetilde{B}_{k}+\sum_{i=1}^{N} \widetilde{q}_{i} \partial^{-1} \widetilde{r}_{i} \partial\right)(\Psi)
$$

(Liu, Lin, et al, J. Math. Phys. 2009)

Example in mKPHWS:

$n=2, k=3$ gives the 1 st type of mKP equation with sources

$$
\begin{aligned}
& 4 \widetilde{u}_{0, t}-\widetilde{u}_{0, x x x}+6 \widetilde{u}_{0}^{2} \widetilde{u}_{0, x}-3 D^{-1} \widetilde{u}_{0, y y}-6 \widetilde{u}_{0, x} D^{-1} \widetilde{u}_{0, y}+4 \sum_{i=1}^{N}\left(\widetilde{q}_{i} \widetilde{r}_{i}\right)_{x}=0, \\
& \widetilde{q}_{i, y}=\widetilde{q}_{i, x x}+2 \widetilde{u}_{0} \widetilde{q}_{i, x}, \\
& \widetilde{r}_{i, y}=-\widetilde{r}_{i, x x}+2 \widetilde{u}_{0} \widetilde{r}_{i, x}, \quad i=1, \ldots, N,
\end{aligned}
$$

where $t:=\tau_{3}, y:=t_{2}$.

Example in mKPHWS:

$n=3, k=2$ gives the 2 nd type of mKP equation with sources

$$
\begin{aligned}
4 \widetilde{u}_{0, t} & -\widetilde{u}_{0, x x x}+6 \widetilde{u}_{0} \widetilde{u}_{0, x}-3 D^{-1} \widetilde{u}_{0, y y}-6 \widetilde{u}_{0, x} D^{-1} \widetilde{u}_{0, y} \\
& +\sum_{i=1}^{N}\left[3\left(\widetilde{q}_{i} \widetilde{r}_{i, x x}-\widetilde{q}_{i, x x} \widetilde{r}_{i}\right)-3\left(\widetilde{q}_{i} \widetilde{r}_{i}\right)_{y}-6\left(\widetilde{u}_{0} \widetilde{q}_{i} \widetilde{r}_{i}\right)_{x}\right]=0, \\
\widetilde{q}_{i, t}= & \widetilde{q}_{i, x x x}+3 \widetilde{u}_{0} \widetilde{q}_{i, x x}+\frac{3}{2}\left(D^{-1} \widetilde{u}_{0, y}\right) \widetilde{q}_{i, x}+\frac{3}{2} \widetilde{u}_{0, x} \widetilde{q}_{i, x}+\frac{3}{2} \widetilde{2}_{0}^{2} \widetilde{q}_{i, x}+\frac{3}{2} \widetilde{q}_{i, x} \sum_{j=1}^{N}\left(\widetilde{q}_{j} \widetilde{r}_{j}\right), \\
\widetilde{r}_{i, t}= & \widetilde{r}_{i, x x x}-3 \widetilde{u}_{0} \widetilde{r}_{i, x x}+\frac{3}{2}\left(D^{-1} \widetilde{u}_{0, y}\right) \widetilde{r}_{i, x}-\frac{3}{2} \widetilde{u}_{0, x} \widetilde{r}_{i, x}+\frac{3}{2} \widetilde{u}_{0}^{2} \widetilde{r}_{i, x}+\frac{3}{2} \widetilde{r}_{i, x} \sum_{j=1}^{N}\left(\widetilde{q}_{j} \widetilde{r}_{j}\right),
\end{aligned}
$$

where $y:=\tau_{2}, t:=t_{3}$.

Gauge transformation between KPHWS and mKPHWS

Gauge transformation

Suppose L, q_{i} 's, and r_{i} 's satisfy the KPHWS, and f is a particular eigenfunction for the Lax pair of the KPHWS, i.e.,

$$
f_{t_{n}}=B_{n}(f), \quad f_{\tau_{k}}=\left(B_{k}+\sum_{i=1}^{N} q_{i} \partial^{-1} r_{i}\right)(f)
$$

then

$$
\widetilde{L}:=f^{-1} L f, \quad \widetilde{q}_{i}:=f^{-1} q_{i}, \quad \widetilde{r_{i}}:=-\partial^{-1}\left(f r_{i}\right)=\left(\partial^{-1}\right)^{*}\left(f r_{i}\right)
$$

satisfy the mKPHWS.
(Liu, Lin, et al. J. Math. Phys 2009)

Wronskian solutions of mKPHWS

we choose

$$
f=S(1)=(-1)^{N} \frac{\mathrm{Wr}\left(\partial\left(h_{1}\right), \partial\left(h_{2}\right), \cdots, \partial\left(h_{N}\right)\right)}{\mathrm{Wr}\left(h_{1}, h_{2}, \cdots, h_{N}\right)}
$$

as the particular eigenfunction for the Lax pair of the KPHWS, where S is the dressing operator defined in the dressing approach for KPHWS. Then the Wronskian solution for the mKPHWS is

$$
\begin{aligned}
& \widetilde{L}=f^{-1} L f=\frac{\operatorname{Wr}\left(h_{1}, \cdots, h_{N}, \partial\right)}{\operatorname{Wr}\left(\partial\left(h_{1}\right), \cdots, \partial\left(h_{N}\right)\right)} \partial\left[\frac{\operatorname{Wr}\left(h_{1}, \cdots, h_{N}, \partial\right)}{\operatorname{Wr}\left(\partial\left(h_{1}\right), \cdots, \partial\left(h_{N}\right)\right)}\right]^{-1} \\
& \widetilde{q}_{i}
\end{aligned}=f^{-1} q_{i}=-\dot{\alpha}_{i} \frac{\operatorname{Wr}\left(h_{1}, h_{2}, \cdots, h_{N}, g_{i}\right)}{\operatorname{Wr}\left(\partial\left(h_{1}\right), \partial\left(h_{2}\right), \cdots, \partial\left(h_{N}\right)\right)}, \quad i=1, \ldots, N, \quad\left(\frac{\operatorname{Wr}\left(\partial\left(h_{1}\right), \cdots, \partial\left(\widehat{h}_{i}\right), \cdots, \partial\left(h_{N}\right)\right)}{\operatorname{Wr}\left(h_{1}, h_{2}, \cdots, h_{N}\right)}\right) .
$$

Soliton solution of 2 nd type KP equation with sources: ($n=3, k=2$) Take

$$
\begin{aligned}
f_{i} & =\exp \left(\lambda_{i} x+\lambda_{i}^{2} y+\lambda_{i}^{3} t\right):=e^{\xi_{i}}, \\
g_{i} & =\exp \left(\mu_{i} x+\mu_{i}^{2} y+\mu_{i}^{3} t\right):=e^{\eta_{i}}, \\
h_{i} & =f_{i}+\alpha_{i}(y) g_{i}=2 \sqrt{\alpha_{i}} e^{\frac{\xi_{i}+\eta_{i}}{2}} \cosh \left(\Omega_{i}\right)
\end{aligned}
$$

where $\lambda_{i} \neq \mu_{i}, \Omega_{i}=\frac{\xi_{i}-\eta_{i}}{2}-\frac{1}{2} \ln \left(\alpha_{i}\right)$. then we get one-soliton solution by dressing method with $N=1$

$$
\begin{aligned}
u & =\frac{\left(\lambda_{1}-\mu_{1}\right)^{2}}{4} \operatorname{sech}^{2}(\Omega), \\
q_{1} & =\sqrt{\alpha_{1}}\left(\lambda_{1}-\mu_{1}\right) e^{\frac{\xi_{1}+\eta_{1}}{2}} \operatorname{sech}\left(\Omega_{1}\right), \\
r_{1} & =\frac{1}{2 \sqrt{\alpha_{1}}} e^{-\frac{\xi_{1}+\eta_{1}}{2}} \operatorname{sech}\left(\Omega_{1}\right) .
\end{aligned}
$$

Soliton solution of 2 nd type mKP equation with sources ($n=3, k=2$)
we get the one-soliton solution by the gauge transformation

$$
\begin{aligned}
v & =\frac{\lambda_{1}-\mu_{1}}{2}\left[\tanh \left(\Omega_{1}+\theta_{1}\right)-\tanh \left(\Omega_{1}\right)\right] \\
\tilde{q}_{1} & =\partial_{y}\left(\sqrt{\alpha_{1} /\left(\lambda_{1} \mu_{1}\right)}\right)\left(\mu_{1}-\lambda_{1}\right) e^{\frac{\xi_{1}+\eta_{1}}{2}} \operatorname{sech}\left(\Omega_{1}+\theta_{1}\right), \\
\tilde{r}_{1} & =-\frac{1}{2 \sqrt{\alpha_{1}}} e^{-\frac{\xi_{1}+\eta_{1}}{2}} \operatorname{sech} \Omega_{1} .
\end{aligned}
$$

The q-deformed case: extended q-KP hierarchy extended q-Modified KP hierarchy

- q-deformed integrable systems (Kac, Jimbo, Frenkel, Tu, He,...) q-Gelfand-Dickey hierarchy, q-KP hierarchy, ...
" ∂_{x} " replaced by " ∂_{q} ":

$$
\partial_{q}(f(x))=\frac{f(q x)-f(x)}{x(q-1)}
$$

- q-deformed integrable systems (Kac, Jimbo, Frenkel, Tu, He,...) q-Gelfand-Dickey hierarchy, q-KP hierarchy, ...
" ∂_{x} " replaced by " ∂_{q} ":

$$
\partial_{q}(f(x))=\frac{f(q x)-f(x)}{x(q-1)} \quad \longrightarrow \quad \partial_{x}(f(x)) \quad \text { when } q \rightarrow 1
$$

The q-KP hierarchy

The q-KP hierarchy

$$
\partial_{t_{n}} L=\left[B_{n}, L\right], \quad B_{n}=L_{+}^{n}
$$

where $L=\partial_{q}+\sum_{i=0}^{\infty} u_{i} \partial_{q}^{-i}=\partial_{q}+u_{0}+u_{1} \partial_{q}^{-1}+u_{2} \partial_{q}^{-2}+\cdots$,

$$
\partial_{q}(f(x))=\frac{f(q x)-f(x)}{x(q-1)}, \quad \theta(f(x))=f(q x)
$$

The q-KP hierarchy

The q-KP hierarchy

$$
\partial_{t_{n}} L=\left[B_{n}, L\right], \quad B_{n}=L_{+}^{n}
$$

where $L=\partial_{q}+\sum_{i=0}^{\infty} u_{i} \partial_{q}^{-i}=\partial_{q}+u_{0}+u_{1} \partial_{q}^{-1}+u_{2} \partial_{q}^{-2}+\cdots$,

$$
\partial_{q}(f(x))=\frac{f(q x)-f(x)}{x(q-1)}, \quad \theta(f(x))=f(q x)
$$

The commutativity of $\partial_{t_{n}}$ flows gives the zero-curvature equations of q-KP hierarchy

$$
B_{n, t_{k}}-B_{k, t_{n}}+\left[B_{n}, B_{k}\right]=0
$$

The (adjoint) q-wave function

The q-wave function and the adjoint one satisfy

$$
\begin{aligned}
L w_{q} & =z w_{q}, & \frac{\partial w_{q}}{\partial t_{n}} & =B_{n} w_{q} \\
\left.L^{*}\right|_{x / q} w_{q}^{*} & =z w_{q}^{*}, & \frac{\partial w_{q}^{*}}{\partial t_{n}} & =-\left(\left.B_{n}\right|_{x / q}\right)^{*} w_{q}^{*}
\end{aligned}
$$

where $\left.P\right|_{x / t}=\sum_{i} p_{i}(x / t) t^{i} \partial_{q}^{i}$ for $P=\sum_{i} p_{i}(x) \partial_{q}^{i}$.

The (adjoint) q-wave function

The q-wave function and the adjoint one satisfy

$$
\begin{array}{cc}
L w_{q}=z w_{q}, & \frac{\partial w_{q}}{\partial t_{n}}=B_{n} w_{q}, \\
\left.L^{*}\right|_{x / q} w_{q}^{*}=z w_{q}^{*}, & \frac{\partial w_{q}^{*}}{\partial t_{n}}=-\left(\left.B_{n}\right|_{x / q}\right)^{*} w_{q}^{*} .
\end{array}
$$

where $\left.P\right|_{x / t}=\sum_{i} p_{i}(x / t) t^{i} \partial_{q}^{i}$ for $P=\sum_{i} p_{i}(x) \partial_{q}^{i}$.

It can be proved that (see, e.g., Ming-Hsien TU 1999)

$$
T(z)_{-} \equiv \sum_{i \in \mathbb{Z}} L_{-}^{i} z^{-i-1}=w_{q} \partial_{q}^{-1} \theta\left(w_{q}^{*}\right)
$$

Introduce a new vector field

Define a new variable τ_{k} whose vector field is

$$
\partial_{\tau_{k}}=\partial_{t_{k}}-\sum_{i=1}^{N} \sum_{s \geq 0} \zeta_{i}^{-s-1} \partial_{t_{s}}
$$

where ζ_{i} 's are arbitrary distinct non-zero parameters.

Introduce a new vector field

Define a new variable τ_{k} whose vector field is

$$
\partial_{\tau_{k}}=\partial_{t_{k}}-\sum_{i=1}^{N} \sum_{s \geq 0} \zeta_{i}^{-s-1} \partial_{t_{s}}
$$

where ζ_{i} 's are arbitrary distinct non-zero parameters.

Then it can be proved that

$$
L_{\tau_{k}}=\left[B_{k}+\sum_{i=1}^{N} \phi_{i} \partial_{q}^{-1} \psi_{i}, L\right]
$$

where $\phi_{i}=w_{q}\left(x, \bar{t} ; \zeta_{i}\right), \psi_{i}=\theta\left(w_{q}^{*}\left(x, \bar{t} ; \zeta_{i}\right)\right), \bar{t}=\left(t_{1}, t_{2}, t_{3}, \ldots\right)$ and

$$
\phi_{i, t_{n}}=B_{n}\left(\phi_{i}\right), \quad \psi_{i, t_{n}}=-B_{n}^{*}\left(\psi_{i}\right), \quad i=1, \cdots, N
$$

New extended q-KP hierarchy
The Lax type equations

$$
L_{t_{n}}=\left[B_{n}, L\right], \quad L_{\tau_{k}}=\left[B_{k}+\sum_{i=1}^{N} \phi_{i} \partial_{q}^{-1} \psi_{i}, L\right]
$$

give a new extended q-KP hierarchy

$$
\begin{gathered}
B_{n, \tau_{k}}-\left(B_{k}+\sum_{i=1}^{N} \phi_{i} \partial_{q}^{-1} \psi_{i}\right)_{t_{n}}+\left[B_{n}, B_{k}+\sum_{i=1}^{N} \phi_{i} \partial_{q}^{-1} \psi_{i}\right]=0 \\
\phi_{i, t_{n}}=B_{n}\left(\phi_{i}\right), \quad \psi_{i, t_{n}}=-B_{n}^{*}\left(\psi_{i}\right), \quad i=1, \cdots, N
\end{gathered}
$$

New extended q-KP hierarchy

The Lax type equations

$$
L_{t_{n}}=\left[B_{n}, L\right], \quad L_{\tau_{k}}=\left[B_{k}+\sum_{i=1}^{N} \phi_{i} \partial_{q}^{-1} \psi_{i}, L\right]
$$

give a new extended q-KP hierarchy

$$
\begin{gathered}
B_{n, \tau_{k}}-\left(B_{k}+\sum_{i=1}^{N} \phi_{i} \partial_{q}^{-1} \psi_{i}\right)_{t_{n}}+\left[B_{n}, B_{k}+\sum_{i=1}^{N} \phi_{i} \partial_{q}^{-1} \psi_{i}\right]=0 \\
\phi_{i, t_{n}}=B_{n}\left(\phi_{i}\right), \quad \psi_{i, t_{n}}=-B_{n}^{*}\left(\psi_{i}\right), \quad i=1, \cdots, N
\end{gathered}
$$

The new extended hierarchy admits a Lax representation

$$
\Psi_{\tau_{k}}=\left(B_{k}+\sum_{i=1}^{N} \phi_{i} \partial_{q}^{-1} \psi_{i}\right)(\Psi), \quad \Psi_{t_{n}}=B_{n}(\Psi)
$$

(Lin, Peng, Mañas, 2010)

KPHWS an q-KPHWS:

KPHWS $\left\{\begin{array}{l}1 \text { 1st KP with sources } \\ 2 \text { nd KP with sources } \\ \cdots \\ \text { reductions }\left\{\begin{array}{l}\text { GD with sources: } 1 \text { st } K d V \text { with sources } \ldots \\ k \text {-constrained KP: } 2 n d \text { KdV with sources } \ldots\end{array}\right.\end{array}\right.$

KPHWS an q-KPHWS:

$$
\begin{aligned}
& \text { KPHWS }\left\{\begin{array}{l}
1 \text { st KP with sources } \\
2 \text { nd KP with sources } \\
\cdots \\
\text { reductions }\left\{\begin{array}{l}
\text { GD with sources: } 1 \text { st } K d V \text { with sources } \ldots \\
k \text {-constrained KP: } 2 n d \text { KdV with sources } \ldots
\end{array}\right.
\end{array}\right. \\
& q-\text { KPHWS }\left\{\begin{array}{l}
1 \text { st } q-\mathrm{KP} \text { with sources } \\
2 \text { nd } q \text {-KP with sources } \\
\ldots \\
\text { reductions }\left\{\begin{array}{l}
q-\mathrm{GD} \text { with sources: } 1 \text { st } q \text {-KdV with sources } \ldots \\
k \text {-constrained } q-\mathrm{KP}: 2 \mathrm{dd} q \text {-KdV with sources } \ldots
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

KPHWS an q-KPHWS:

$$
\begin{aligned}
& \text { KPHWS }\left\{\begin{array}{l}
1 \text { st KP with sources } \\
2 n d \text { KP with sources } \\
\ldots \\
\text { reductions }\left\{\begin{array}{l}
\text { GD with sources: 1st } K d V \text { with sources } \ldots \\
k \text {-constrained KP: 2nd KdV with sources } . .
\end{array}\right.
\end{array}\right. \\
& \uparrow \quad\left(q \rightarrow 1, u_{0} \equiv 0\right) \\
& q-\text { KPHWS }\left\{\begin{array}{l}
1 \text { st } q-\mathrm{KP} \text { with sources } \\
2 \text { nd } q \text {-KP with sources } \\
\ldots \\
\text { reductions }\left\{\begin{array}{l}
q-\mathrm{GD} \text { with sources: } 1 \text { st } q \text {-KdV with sources } \ldots \\
k \text {-constrained } q-\mathrm{KP}: 2 \mathrm{dd} q \text {-KdV with sources } \ldots
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

Bilinear identity for KPHWS:

Theorem The bilinear identity for the KP hierarchy with selfconsistent sources (KPHWS) (with new time flow denoted by \bar{t}_{k}) is given by the following sets of residue identities with auxiliary variable z :
$\operatorname{Res}_{\lambda} w\left(z-\bar{t}_{k}, \mathbf{t}, \lambda\right) \cdot w^{*}\left(z-\bar{t}_{k}, \mathbf{t}^{\prime}, \lambda\right)=0$,
$\operatorname{Res}_{\lambda} w_{z}\left(z-\bar{t}_{k}, \mathbf{t}, \lambda\right) \cdot w^{*}\left(z-\vec{t}_{k}, \mathbf{t}^{\prime}, \lambda\right)=q\left(z-\bar{t}_{k}, \mathbf{t}\right) r\left(z-\bar{t}_{k}^{\prime}, \mathbf{t}^{\prime}\right)$,
$\operatorname{Res}_{\lambda} w\left(z-\bar{t}_{k}, \mathbf{t}, \lambda\right) \cdot \partial^{-1}\left(q\left(z-\bar{t}_{k}^{\prime}, \mathbf{t}^{\prime}\right) w^{*}\left(z-\bar{t}_{k}^{\prime}, \mathbf{t}^{\prime}, \lambda\right)\right)=-q\left(z-\bar{t}_{k}, \mathbf{t}\right)$,
$\operatorname{Res}_{\lambda} \partial^{-1}\left(r\left(z-\bar{t}_{k}, \mathbf{t}\right) w\left(z-\bar{t}_{k}, \mathbf{t}, \lambda\right)\right) \cdot w^{*}\left(z-\bar{t}_{k}^{\prime}, \mathbf{t}^{\prime}, \lambda\right)=r\left(z-\bar{t}_{k}^{\prime}, \mathbf{t}^{\prime}\right)$,
where $\mathbf{t}=\left(t_{1}, t_{2}, \cdots, t_{k-1}, \bar{t}_{k}, t_{k+1}, \cdots\right), \mathbf{t}^{\prime}=\left(t_{1}^{\prime}, t_{2}^{\prime}, \cdots, t_{k-1}^{\prime}, \bar{t}_{k}, t_{k+1}^{\prime}, \cdots\right)$.
(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)

Tau function for KPHWS:

Make the following ansatz:

$$
\begin{gathered}
w\left(z-\bar{t}_{k}, \mathbf{t}, \lambda\right)=\frac{\tau\left(z-\bar{t}_{k}+\frac{1}{k \lambda^{k}}, \mathbf{t}-[\lambda]\right)}{\tau\left(z-\bar{t}_{k}, \mathbf{t}\right)} \cdot \exp \xi(\mathbf{t}, \lambda) \\
w^{*}\left(z-\bar{t}_{k}, \mathbf{t}, \lambda\right)=\frac{\tau\left(z-\bar{t}_{k}-\frac{1}{k \lambda^{k}}, \mathbf{t}+[\lambda]\right)}{\tau\left(z-\bar{t}_{k}, \mathbf{t}\right)} \cdot \exp (-\xi(\mathbf{t}, \lambda)) \\
q(z, \mathbf{t})=\frac{\sigma(z, \mathbf{t})}{\tau(z, \mathbf{t})}, \quad r(z, \mathbf{t})=\frac{\rho(z, \mathbf{t})}{\tau(z, \mathbf{t})} \\
\text { where } \xi(\mathbf{t}, \lambda)=\bar{t}_{k} \lambda^{k}+\sum_{i \neq k} t_{i} \lambda^{i},[\lambda]=\left(\frac{1}{\lambda}, \frac{1}{2 \lambda^{2}}, \frac{1}{3 \lambda^{3}}, \cdots\right)
\end{gathered}
$$

(Ref. Cheng and Zhang, 1994; Loris and Willox, 1997).
(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)

Hirota bilinear equations for KPHWS:

Then we have
$\operatorname{Res}_{\lambda} \bar{\tau}(z, \mathbf{t}-[\lambda]) \bar{\tau}\left(z, \mathbf{t}^{\prime}+[\lambda]\right) e^{\xi\left(\mathbf{t}-\mathbf{t}^{\prime}, \lambda\right)}=0$,
$\operatorname{Res}_{\lambda} \bar{\tau}_{z}(z, \mathbf{t}-[\lambda]) \bar{\tau}\left(z, \mathbf{t}^{\prime}+[\lambda]\right) e^{\xi\left(\mathbf{t}-\mathbf{t}^{\prime}, \lambda\right)}$

$$
-\operatorname{Res}_{\lambda} \bar{\tau}(z, \mathbf{t}-[\lambda])\left(\partial_{z} \log \bar{\tau}(z, \mathbf{t})\right) \bar{\tau}\left(z, \mathbf{t}^{\prime}+[\lambda]\right) e^{\xi\left(\mathbf{t}-\mathbf{t}^{\prime}, \lambda\right)}
$$

$$
=\bar{\sigma}(z, \mathbf{t}) \bar{\rho}\left(z, \mathbf{t}^{\prime}\right),
$$

$\operatorname{Res}_{\lambda} \lambda^{-1} \bar{\tau}(z, \mathbf{t}-[\lambda]) \bar{\sigma}\left(z, \mathbf{t}^{\prime}+[\lambda]\right) e^{\xi\left(\mathbf{t}-\mathbf{t}^{\prime}, \lambda\right)}=\bar{\sigma}(z, \mathbf{t}) \bar{\tau}\left(z, \mathbf{t}^{\prime}\right)$,
$\operatorname{Res}_{\lambda} \lambda^{-1} \bar{\rho}(z, \mathbf{t}-[\lambda]) \bar{\tau}\left(z, \mathbf{t}^{\prime}+[\lambda]\right) e^{\xi\left(\mathbf{t}-\mathbf{t}^{\prime}, \lambda\right)}=\bar{\rho}\left(z, \mathbf{t}^{\prime}\right) \bar{\tau}(z, \mathbf{t})$.
Here the bar - over a function $f(z, \mathbf{t})$ is defined as $\bar{f}(z, \mathbf{t}) \equiv$ $f\left(z-\bar{t}_{k}, \mathbf{t}\right)$, e.g, $\bar{\tau}(z, \mathbf{t}-[\lambda]) \equiv \tau\left(z-\left(\bar{t}_{k}-\frac{1}{k \lambda^{k}}\right), \mathbf{t}-[\lambda]\right)$.

This gives the Hirota bilinear equations for the KPHWS.
(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)

Example: for the 2nd type of KPWS

The Hirota bilinear equations for the KPWS-II can be obtained as

$$
\begin{aligned}
& D_{x} \tau_{z} \cdot \tau+\sigma \rho=0 \\
& \left(D_{x}^{4}+3\left(D_{\bar{t}_{2}}-D_{z}\right)^{2}-4 D_{x} D_{t_{3}}\right) \tau \cdot \tau=0 \\
& \left(\left(D_{\bar{t}_{2}}-D_{z}\right)+D_{x}^{2}\right) \tau \cdot \sigma=0 \\
& \left(\left(D_{\bar{t}_{2}}-D_{z}\right)+D_{x}^{2}\right) \rho \cdot \tau=0 \\
& \left(4 D_{t_{3}}-D_{x}^{3}+3 D_{x}\left(D_{\bar{t}_{2}}-D_{z}\right)\right) \tau \cdot \sigma=0 \\
& \left(4 D_{t_{3}}-D_{x}^{3}+3 D_{x}\left(D_{\bar{t}_{2}}-D_{z}\right)\right) \rho \cdot \tau=0
\end{aligned}
$$

(Lin, Liu, Zeng, J. Nonlinear Math. Phys., 2013)

Ref: Result by Hu and Wang (2007)

Another Hirota bilinear equations for the KPWS-II can be obtained by Pfaffian method (by Hu and Wang, 2007)

$$
\begin{aligned}
& \left(D_{x}^{4}-4 D_{x} D_{t}+3 D_{y}^{2}\right) f \cdot f=6 \sum_{i=1}^{M}\left(D_{y} k_{i} \cdot f-D_{x} g_{i} \cdot h_{i}\right), \\
& D_{x} k_{i} \cdot f+g_{i} h_{i}=0, \\
& \left(D_{y}-D_{x}^{2}\right) g_{i} \cdot f=P_{i} f-g_{i} \sum_{j=1}^{M} k_{j}, \\
& \left(D_{y}-D_{x}^{2}\right) f \cdot h_{i}=h_{i} \sum_{j=1}^{M} k_{j}-f Q_{i}, \\
& \left(D_{x}^{3}+3 D_{x} D_{y}-4 D_{t}\right) g_{i} \cdot f=3 D_{x}\left[P_{i} \cdot f-g_{i} \cdot\left(\sum_{j=1}^{M} k_{j}\right)\right], \\
& \left(D_{x}^{3}+3 D_{x} D_{y}-4 D_{t}\right) f \cdot h_{i}=3 D_{x}\left[\left(\sum_{j=1}^{M} k_{j}\right) \cdot h_{i}-f \cdot Q_{i}\right] .
\end{aligned}
$$

The idea to the full discrete system:

discrete KP (or Hirota-Miwa) equation with self-consistent sources:
X.B. Hu, H. Wang, Inverse Probl. 2006;
A. Doliwa, R. Lin, Phys. Letts. A, 2014.

Conclusion:

KPHWS

Conclusion:

- The KPHWS and mKPHWS are constructed by introducing a new time flow;

Conclusion:

- The KPHWS and mKPHWS are constructed by introducing a new time flow;
- a generalized dressing approach is introduced to solve the KPHWS;

Conclusion:

- The KPHWS and mKPHWS are constructed by introducing a new time flow;
- a generalized dressing approach is introduced to solve the KPHWS;
- a gauge transformation is established between KPHWS and mKPHWS;

Conclusion:

- The KPHWS and mKPHWS are constructed by introducing a new time flow;
- a generalized dressing approach is introduced to solve the KPHWS;
- a gauge transformation is established between KPHWS and mKPHWS;
- the Wronskian solution of KPHWS and mKPHWS are obtained;

Conclusion:

- The KPHWS and mKPHWS are constructed by introducing a new time flow;
- a generalized dressing approach is introduced to solve the KPHWS;
- a gauge transformation is established between KPHWS and mKPHWS;
- the Wronskian solution of KPHWS and mKPHWS are obtained;
- the bilinear identity of KPHWS is derived.

Thank you!

