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Introduction

Introduction

An appealing aspect of holography is its interpretation in terms of
the renormalization group of quantum field theories — the ‘radial
coordinate’ is a geometrization of the renormalization scale —
Hamilton-Jacobi theory of the radial quantization is expected to
play a central role.
e.g., [de Boer, Verlinde2 ’99, Skenderis ’02, Heemskerk & Polchinski ’10, Faulkner, Liu & Rangamani ’10 ...]

usually this is studied from the bulk side, as the QFT is typically
strongly coupled
here, we will approach the problem directly from the field theory
side, using the Wilson-Polchinski exact renormalization group
around (initially free) field theories [Douglas, Mazzucato & Razamat ’10]
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Introduction

Higher Spin Holography

standard holography:

strongly coupled QFT ↔ weakly coupled (s)gravity

(no direct QFT/RG methods)
vector model holography:

weakly coupled QFT ↔ higher spin theory

(direct (exact) QFT/RG methods)
[Klebanov & Polyakov ’02, Sezgin & Sundell ’02, Leigh & Petkou ’03] [Vasiliev ’96, ’99, ’12] [de Mello Koch, et al

’11], ...

goals: obtain precise geometric characterization, study the
outcomes of interacting RG flows, emergence of standard
holography
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Introduction

Higher Spin Holography

free field theories have an infinite set of conserved currents

j(s)
µ1...µs (x) ∼ φm(x)∂µ1 ...∂µsφ

m(x)

one expects that these are all holographically dual to gauge fields
(of appropriate spin)
the corresponding gauge group is enormous!

I characterize this group?
I organize the hs theory in terms of connections on some bundle?
I understand the origins of holography in interacting theories?

note that gravity (stress tensor↔ bulk metric) is just one of these
modes
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Advertisements

Punch Lines

We will first study free field theories perturbed by arbitrary bi-local
‘single-trace’ operators.

I This is a ‘consistent truncation’ of the full RG system.
I No approximations allowed!
I It corresponds to the ‘unbroken phase’ of a HS theory.

We identify a formulation in which the operator sources
correspond (amongst other things) manifestly to a connection on a
really big principal bundle (i.e., a so-called infinite jet bundle).
The ‘gauge group’ can be understood directly in terms of field
redefinitions in the path integral

I consequently there are exact Ward identities that correspond to the
ERG equations,

I these subsequently define/determine the bulk theory exactly.
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Advertisements

More Punch Lines

The space-time structure extends in a natural way (governed by
ERG) to a geometric structure over a space-time of one higher
dimension, and AdSd+1 emerges as a geometry corresponding to
the (relativistic) free fixed point, encoded in a flat connection.
the ERG equations are the first-order equations of motion of a
bulk phase space structure (corresponding to ‘radial quantization’)
from the bulk point of view, these are equivalent to the equations
of motion of a higher spin gauge theory
identifying this Hamilton-Jacobi structure gives us an action for the
higher spin theory, which, as is usual in holography, if taken
on-shell encodes all of the correlation functions of the field theory
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Advertisements

More Punch Lines

all of the correlation functions of the free fixed point can be
calculated exactly and have a holographic interpretation
(corresponding to ‘Witten diagrams’)
free fixed points with other symmetries also have duals with
unbroken higher spin symmetries (with a corresponding
background geometry (flat connection))

I e.g., the ERG of z = 2 non-relativistic free theory and its
corresponding holographic HS theory can be constructed via DLCQ

I the bulk theory remembers the choice of superselection sector
(value of the ‘mass’ n) via a holonomy of the flat connection

I this flat connection equivalent to the Schrödinger geometry
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Some Background Material The Exact Renormalization Group

The Exact Renormalization Group (ERG)

Polchinski ’84: formulated field theory path integral by introducing
a regulator given by a cutoff function accompanying the fixed point
action (i.e., the kinetic term).

Z =

∫
[dφ]e−

∫
φK−1

F (−�/M2)�φ−Sint [φ]

M
∂Sint

∂M
= −1

2

∫
M
∂KF

∂M
�−1

[
δSint

δφ

δSint

δφ
+
δ2Sint

δφ2

]
K(x)

x1

this equation describes how the couplings must depend on the
RG scale in order that the partition function be independent of the
cutoff.
can apply similar methods to correlation functions, and thus obtain
exact Callan-Symanzik equations as well
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Some Background Material The Exact Renormalization Group

The ERG and Holography

in this form, the ERG equations will be inconvenient — instead of
moving the cutoff, we would like to fix the cutoff (∼ M) and move a
renormalization scale (z)
the ERG equations are first order equations, while bulk EOM are
often second order
solutions of such equations though are interpreted in terms of
sources and vevs — the expected H-J structure implies that these
should be thought of as canonically conjugate in radial
quantization
thus, we anticipate that the ERG equations for sources and vevs
should be thought of as first-order Hamilton equations in the bulk
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Single-Trace Majoranas in 2+1

Locality is Over-Rated

unbroken higher spin symmetry implies an infinite number of
conserved currents — one can hardly expect to find a local theory
indeed, free field theories have a huge non-local symmetry
e.g., N Majoranas in 2 + 1

S0 =

∫
x ,y
ψ̃m(x)γµPF ;µ(x , y)ψm(y) ≡

∫
ψ̃m · γµPF ;µ · ψm

PF ;µ(x , y) = ∂(x)
µ δ(x − y)

we include sources for the identity operator and all ‘single-trace’
operators

Sint = U +
1
2

∫
x ,y
ψ̃m(x)

(
A(x , y) + γµWµ(x , y)

)
ψm(y)
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Single-Trace Majoranas in 2+1

The O(L2(Rd)) Symmetry

Bi-local sources collect together infinite sets of local operators,
obtained by expanding near x → y

A(x , y) =
∞∑

s=0

Aa1···as (x)∂
(x)
a1
· · · ∂(x)

as δ(x − y)

Now we consider the following bi-local map of elementary fields

ψm(x) 7→
∫

y
L(x , y)ψm(y) = L · ψm(x)

We look at the action

S → ψ̃m · LT ·
[
γµ(PF ;µ + Wµ) + A

]
· L · ψm

= ψ̃m · γµLT · L · PF ;µ · ψm

+ ψ̃m ·
[
γµ(LT ·

[
PF ;µ,L

]
+ LT ·Wµ · L) + LT · A · L

]
· ψm
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Single-Trace Majoranas in 2+1

The O(L2) Symmetry

Thus, if we take L to be orthogonal,

LT · L(x , y) =

∫
z
L(z, x)L(z, y) = δ(x , y),

the kinetic term is invariant, while the sources transform as

Wµ 7→ L−1 ·Wµ · L+ L−1 ·
[
PF ;µ,L

]
A 7→ L−1 · A · L

We interpret this to mean that the source Wµ(x , y) is the O(L2)
connection, while A transforms tensorially under O(L2)
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Single-Trace Majoranas in 2+1

The O(L2) Symmetry

Punch line: the O(L2) transformation leaves the fixed point action
invariant. Dµ = PF ;µ + Wµ plays the role of covariant derivative.
More precisely, the free fixed point corresponds to any
configuration

(A,Wµ) = (0,W (0)
µ )

where W (0) is any flat connection, dW (0) + W (0) ∧W (0) = 0
It is therefore useful to split the full connection as

Wµ = W (0)
µ + Ŵµ

I W (0) is a flat connection associated with the fixed point
I A, Ŵ are operator sources, transforming tensorially under O(L2)

Rob Leigh (UIUC) HRG Thessaloniki: February 2015 13 / 37



Single-Trace Majoranas in 2+1

The O(L2) Connection

D(0)
µ = PF ;µ + W (0)

µ is the background covariant derivative
to employ the ERG, we must introduce a regulator. A simple
modification allows us to do that:

PF ,µ(x , y) 7→ K−1
F (−D(0)2/M2)∂(x)

µ δ(x − y)

this is covariant under O(L2)

the content of ERG will be the statement that the partition function
is independent of M, and we will construct this statement as an
exact Ward identity
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Single-Trace Majoranas in 2+1

The O(L2) Ward Identity

Indeed, the O(L2) transformation is a trivial operation from the
path integral point of view (change of integration variable), and so
we conclude that there is an exact Ward identity

Z [M,g(0),Wµ,A] = Z [M,g(0),L−1 ·Wµ ·L+L−1 ·PF ;µ ·L,L−1 ·A ·L]

this is the usual notion of a background symmetry: a
transformation of the elementary fields is compensated by a
change in background
more generally, we can turn on sources for arbitrary multi-local
multi-trace operators — the sources will generally transform
tensorially under O(L2)
(see later, perhaps)
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Single-Trace Majoranas in 2+1

The O(L2(Rd)) Symmetry

In fact, the subgroup of O(L2) leaving W (0) invariant is O(2,d),
the conformal group of the boundary theory
Thus the quasi-local expansion that we previously wrote

A(x , y) =
∞∑

s=0

Aa1···as (x)∂
(x)
a1
· · · ∂(x)

as δ(x − y)

should best be reformulated as a sum over conformal modules
(the representation of O(L2(Rd )) being reducible as a direct sum
of O(2,d) irreps)
soon, W (0) will be extended to a corresponding (Cartan)
connection in the bulk, and we will identify it with that
corresponding to AdS geometry
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Single-Trace Majoranas in 2+1

The CO(L2) symmetry

We can generalize the O(L2) condition to include scale
transformations∫

z
L(z, x)L(z, y) = λ(x)2∆ψδ(x − y)

This is a symmetry (in the previous sense) provided we also
transform the metric, the cutoff and the sources

g(0) 7→ λ2g(0), M 7→ λ−1M

A 7→ L−1 · A · L

Wµ 7→ L−1 ·Wµ · L+ L−1 ·
[
PF ;µ,L

]
.

A convenient way to keep track of the scale is to introduce the
conformal factor g(0) = 1

z2 η. Then z 7→ λ−1z. This z should be
thought of as the renormalization scale.
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Single-Trace Majoranas in 2+1

The Renormalization group

To study RG systematically, we proceed in two steps:

Step 1: Lower the cutoff M 7→ λM, by integrating out the “fast
modes”

Z [M, z,A,W ] = Z [λM, z, Ã, W̃ ] (Polchinski)

Step 2: Perform a CO(L2) transformation to bring the cutoff back
to M, but in the process changing z 7→ λ−1z

Z [λM, z, Ã, W̃ ] = Z [M, λ−1z,L−1 · Ã · L,L−1 · W̃ · L+L−1 · [PF ,L]]

We can now compare the sources at the same cutoff, but different
z. Thus, z becomes the natural flow parameter, and we can think
of the sources as being z-dependent.

I Thus we have the Polchinski formalism extended to include both a
cutoff and an RG scale — required for a holographic interpretation.
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Single-Trace Majoranas in 2+1
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Single-Trace Majoranas in 2+1

Infinitesimal version: RG equations

Infinitesimally, we parametrize the CO(L2) transformation as

L ' 1 + εzWz

think of as the z-component of the connection.
The RG equations become

A(z + εz) = A(z) + εz [Wz ,A] + εzβ(A) + O(ε2)

Wµ(z + εz) = Wµ(z) + εz
[
PF ;µ + Wµ,Wz

]
+ εzβ(W )

µ + O(ε2)

The beta functions are tensorial, and quadratic in A and Ŵ .
The flat connection W (0) also satisfies a “pure-gauge” RG
equation

W (0)
µ (z + εz) = W (0)

µ (z) + εz
[
PF ;µ + W (0)

µ ,W (0)
z

]
+ O(ε2)
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Single-Trace Majoranas in 2+1

RG equations

Thus, RG extends the sources A and Wµ to bulk fields A andWI .
Comparing terms linear in ε gives

∂zW(0)
µ − [PF ;µ,W

(0)
z ] + [W(0)

z ,W(0)
µ ] = 0

∂zA+ [Wz ,A] = β(A)

∂zWµ − [PF ;µ,Wz ] + [Wz ,Wµ] = β(W)
µ

These equations are naturally thought of as being part of fully
covariant equations (e.g., the first is the zµ component of a bulk
2-form equation, where d ≡ dxµPF ,µ + dz∂z .)

dW(0) +W(0) ∧W(0) = 0
dA+ [W,A] = β(A)

dW +W ∧W = β(W)

The resulting equations are then diff invariant in the bulk.
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Single-Trace Majoranas in 2+1

Hamilton-Jacobi Structure

Similarly, one can extract exact Callan-Symanzik equations for the
z-dependence of Π(x , y) = 〈ψ̃(x)ψ(y)〉, Πµ(x , y) = 〈ψ̃(x)γµψ(y)〉.
These extend to bulk fields P,PA.
The full set of equations then give rise to a phase space
formulation of a dynamical system — (A,P) and (WA,PA) are
canonically conjugate pairs from the point of view of the bulk.
If we identify Z = eiSHJ , then a fundamental relation in H-J theory
is

∂

∂z
SHJ = −H

We can thus read off this Hamiltonian — it can be thought of as
the output of the ERG analysis
there is a corresponding action SHJ for this higher spin theory,
written in terms of phase space variables
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Single-Trace Majoranas in 2+1

Hamilton-Jacobi Structure

We interpret this phase space theory as the higher spin gauge
theory
this theory is written as a gauge theory on a spacetime, topology
∼ Rd × R+

a flat connectionW(0) representing the free fixed point, in suitable
coordinates, might be written

W(0)(x , y) = −dz
z

D(x , y) +
dxµ

z
Pµ(x , y)

where Pµ(x , y) = ∂
(x)
µ δ(x − y), etc.

This (Cartan) connection is equivalent to the vielbein and spin
connection of AdSd+1.
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Single-Trace Scalars in d dimensions

Bosonic Relativistic Free Fixed Point

Another example consists of N complex scalar fields. In this case,
we formulate the single-trace deformations in terms of the CU(L2)
connection.

S =

∫
φ∗m ·

([
DF ;µ + Wµ

]2
+ B

)
· φm

The ERG equations give rise to an ‘A-model’ in any dimension.
Here though there is an extra background symmetry

Z [M, z,B,W (0)
µ , Ŵµ + Λµ] = Z [M, z,B + {Λµ,Dµ}+ Λµ·Λµ,W (0)

µ , Ŵµ]

this background symmetry allows for fixing Wµ →W (0)
µ , and the

corresponding transformed B sources all single-trace currents.
[This was the starting point of Douglas, et al, and so geometry was not manifest.]
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Single-Trace Correlation Functions

The Bulk Action and Correlation Functions

For the bosonic theory, the bulk phase space action is

I =

∫
dz Tr

{
P I ·

(
DIB− β

(B)
I

)
+ P IJ · F (0)

IJ + N ∆B·B
}

Here ∆B is a derivative with respect to M of the cutoff function.
As in any holographic theory, we solve the bulk equations of
motion in terms of boundary data, and obtain the on-shell action,
which encodes the correlation functions of the field theory.
It is straightforward to carry this out exactly for the free fixed point.
Here we have

Io.s. = N
∫

∆B ·B

where now B is the bulk solution
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Single-Trace Correlation Functions

The Bulk Action and Correlation Functions

The RG equation[
D(0)

z ,B
]

= β
(B)
z = B ·∆B ·B

can be solved iteratively

B = αB(1) + α2B(2) + ...,

[
D(0)

z ,B(1)

]
= 0[

D(0)
z ,B(2)

]
= B(1) ·∆B ·B(1)[

D(0)
z ,B(3)

]
= B(2) ·∆B ·B(1) + B(1) ·∆B ·B(2)

...
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Single-Trace Correlation Functions

The Bulk Action and Correlation Functions

The first equation is homogeneous and has the solution

B(1)(z; x , y) =

∫
x ′,y ′

K−1(z; x , x ′)b(0)(x ′, y ′)K (z; y ′, y)

where we have defined the boundary-to-bulk Wilson line

K (z) = P· exp
∫ z

ε
dz ′ W(0)

z (z ′)

with the boundary being placed at z = ε. (UV cutoff ∼ M/ε)
b(0) has the interpretation of a boundary source
this can then be inserted into the second order equation and the
whole system solved iteratively
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Single-Trace Correlation Functions

The Bulk Action and Correlation Functions

At k th order, one finds a contribution to the on-shell action

I(k)
o.s. = N

∫ ∞
ε

dz1

∫ z1

ε
dz2...

∫ zk−1

ε
dzk

×Tr H(z1)·b(0)·H(z2)·b(0)·...·H(zk )·b(0)

+permutations

where H(z) ≡ K−1(z)·∆B(z)·K (z) = ∂zg(z)

The Witten diagram for the bulk on-shell action at third order.
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Single-Trace Correlation Functions

The Bulk Action and Correlation Functions

The z-integrals can be performed trivially, resulting in

I(k)
o.s. =

N
k

Tr
(
g(0)·b(0)

)k

where g(0) = g(∞) is the boundary free scalar propagator
This result admits a resummation, resulting in

Z [b(0)] = det−N (1− g(0)b(0)

)
which is the exact generating functional for the free fixed point.
Thus, this holographic theory does everything that it can for us.
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Single-Trace Understanding the Bulk Theory

Localization and Fronsdal

clearly we have a higher spin theory on AdSd+1. It has been
formulated holographically, we have a precise understanding of
the ‘gauge group’, we have a detailed understanding of all of the
bulk interactions
but it is not clear what relationship it might have with the Vasiliev
higher spin theory (if in fact it does)
To investigate this, the first thing we can do (see 1503.xxxxx) is to
isolate the individual propagating local bulk modes (turn off bulk
interactions and expand quasi-locally into individual spin-s
modes). These should satisfy the Fronsdal higher spin equations
of motion.
this is essentially guaranteed by the fact that we have the group
theory well-organized, but perhaps it is helpful to see it carefully.
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Single-Trace Understanding the Bulk Theory

Localization and Fronsdal

in the boundary we have currents ja1...as (0) that are the lowest
weights of a conformal module D(∆, s) (s labels an O(1,d − 1)
irrep). Because they are conserved, the representation is short,
with ∆ = s + d − 2.
more relevant to the present discussion is the fact that the vevs

Πa1...as (x) ∈ D(∆, s),

while the corresponding sources

Ba1...a2(x) ∈ D(d −∆, s),

the dual shadow representation

in the bulk, dynamical variables
(

Ba1...a2(z, x),Πa1...as (z, x)
)

that
together transform in D(∆, s)⊗ D(d −∆, s)
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Single-Trace Understanding the Bulk Theory

Localization and Fronsdal

The Fronsdal equations are nothing but the statement that the
quadratic Casimir of O(2,d) for either of these representations is

C2 = s(s + d − 2)−∆(d −∆)

representing O(2,d) in the bulk, we find

C2 = z2∂2
z + (2s − d + 1)z∂z + s(s − d) + s(s + d − 2) + z2�

which is indeed Fronsdal (in an appropriate ‘Coulomb’ gauge)
so how to see this from our higher spin theory?
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Single-Trace Understanding the Bulk Theory

Localization and Fronsdal

recall the bulk equations of motion

D(0)
z B = B·∆B·B
D(0)

z P = iN∆B − P·B·∆B −∆B·B·P

In particular, we want to study the above equations upon
linearizing about the background

B = 0, P = P(0)

where P(0) satisfies D(0)
z P(0) = iN∆B, which corresponds to the

free fixed point.
the linearized equations are of the form

zD(0)
z b1 = (d + 2)b1

zD(0)
z p1 = (d − 2)p1 − z−3

(
P(0)·b1·∆B −∆B·b1·P(0)

)
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Single-Trace Understanding the Bulk Theory

Localization and Fronsdal

the linearized equations are of the form

zD(0)
z b1 = (d + 2)b1

zD(0)
z p1 = (d − 2)p1 − z−3

(
P(0)·b1·∆B −∆B·b1·P(0)

)
this is unusual only in the sense that there is no p2

1 term in the
Hamiltonian (and thus no p1 term in the first equation), even
though the symplectic form is standard

Ω(z) =

∫
ddx
zd δφ(z, x) ∧ δπ(z, x)

this indicates that canonical transformations in the bulk can be
used to put the equations in a more familiar (harmonic oscillator)
form
when one makes use of that, one finds the Fronsdal equations
precisely
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Interactions

Remarks

What of standard gravitational holography?
A standard piece of higher spin lore is expected to kick in here —
when interactions in the field theory are included, the higher spin
symmetry of the bulk breaks spontaneously (the operators get
anomalous dimensions, corresponding to masses in the bulk).
it is plausible that a gap might open up and only a few modes
(such as graviton, ...) survive, but the detailed form of such
interactions will determine where the theory flows
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Interactions Multi-trace deformations

Interactions

e.g., can introduce arbitrary (non-local) multi-trace interactions
I can study all of these on an equal footing by Hubbard-Stratanovich
I at N =∞, the bulk equations are easily solved

F gap equations of the field theory are the modified boundary
conditions of the higher spin fields of the bulk theory

I beyond leading order, the bulk theory is quantum; the H-S fields
become dynamical in the bulk, and 1/N plays the role of ~, as
expected

an old conjecture: double trace deformations involving higher spin
fields lead to new critical points in d = 3 [Leigh & Petkou ’04]

I we expect to be able to compute, for example, all of the anomalous
dimensions of currents at these fixed points, bulk interactions, etc.
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Conclusions

Open Questions

(interacting) matrix theories?
Gauge interactions (various)?
Geometry of global symmetries?
Emergence of just gravity?
Entanglement? MERA?
Other spacetime topologies?
Other states (e.g., finite temperature), corresponding geometries?
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