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Quantum Critical Points
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In materials with quantum critical behavior:

- Interesting scaling behavior (maybe anomalous?) of

transport coefficients

ρxx ∼ T

- Planck dissipation: the only apparent scale is the

temperature
1

τ
∼ kBT

~
Close to “minimal value”
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- Interaction rate among electrons � Interaction

rate with lattice and impurities

- Hydrodynamic description expected to be valid

[Damle, Sachdev; Andreev, Kivelson,Spivak; Davison,

Schalm, Zaanen]

- Scaling symmetry
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Symmetries

We will assume that the symmetries of the critical

point are:

- Time and space translations

- Spatial rotations

- Anisotropic scaling

t→ λzt, xi → λxi

Boost invariance?
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The associated Ward identities are

- Translations and rotations:

∂µT
µν = 0, T ij = T ji

- Scaling

zT 00 −
∑
i

T ii = 0.

- If there is no boost invariance

T 0i 6= T i0 or J i 6= T 0i

How should we implement this in hydrodynamics?
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The z = 2 Lifshitz scalar

S =
1

2

∫
dtddx

(
(∂tφ)2 − κ

2
(∇2φ)2

)
Finite temperature T = Lifshitz fluid at rest

- Rotational symmetry is unbroken〈
T 0i
〉

=
〈
T i0
〉

= 0,
〈
T ij
〉
∝ δij

- The Ward identity and scaling are satisfied

zε = z
〈
T 00
〉

= d
〈
T ii
〉

= dp ∝ T (d+z)/z

How do we describe the moving fluid?
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First let’s write the action in a more useful form

S =
1

2

∫
dtddxe

(
tatbeµae

ν
b∂µφ∂νφ−

κ

2
(P abt e

µ
ae
ν
b∂µ∂νφ)2

)

- We define a rest frame of the Lifshitz fluid at

each point on the tangent space ta = (1, 0, · · · , 0)
(P abt = ηab + tatb)

- The geometry is flat eµa = δµa
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- Suppose we are an observer moving at constant

velocity

xµ(τ) = τvµ

- We first use coordinates where we will be at rest

xµ(τ) −→ Λµνx
ν(τ) = τδµ0

- However, this changes the frame eµa −→ Λµαeαa

- We can go back to the original frame by doing a

Lorentz transformation on the tangent space

Λµαe
α
b (Λ−1)ba = eµa

- This will change the vector that defines the rest

frame of the Lifshitz fluid ta −→ Λab t
b ≡ ua
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- For an observer moving at constant velocity

relative to the Lifshitz fluid the right action is

S =
1

2

∫
dtddxe

(
uaubeµae

ν
b∂µφ∂νφ−

κ

2
(P abeµae

ν
b∂µ∂νφ)2

)

- At non-zero T The expectation value of the

energy-momentum tensor is

〈Tµν〉 = εuµuν + pPµν

Where uµ is the velocity of the fluid relative to

the observer and Pµν = ηµν + uµuν

- The Ward identity for the scaling symmetry

becomes

zTµνuµuν − TµνPµν = 0
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- The form of the scaling symmetry changes for an

observer with relative motion to the Lifshitz fluid

- For constant velocities the energy-momentum

tensor is the same as for a fluid with boost

invariance

- Then, for slowly varying velocities of the fluid, the

same will be true for the ideal energy-momentum

tensor

- In general we expect deviations proportional to

derivatives of the velocity
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Hydrodynamics
The effective low energy description at nonzero

temperature

- Variables: uµ(x), T (x), µ(x)

- Constitutive relations

Tµν = εuµuν + pPµν + πµν

Jµ = quµ + νµ

- Conservation equations ⇒ dynamical equations

∂µT
µν = F ναJα, ∂µJ

µ = 0.
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- Scaling Ward identity (at least at the ideal order)

zTµνuµuν − TµνPµν = 0

It turns out this is true also at first order for

theories with a holographic dual... but maybe the

symmetry is larger? [Hartong, Kiritsis, Obers]

- Rotational invariance

(Tµν − T νµ)PµαPνβ = 0

- Breaking of boost invariance

(Tµν − T νµ)Pµαuν 6= 0
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- Generic form of derivative terms if there is no

boost invariance

πµν = u[µV
ν]
A + πµνS

Where V µ
Auµ = 0, πµνS = πνµS

- Landau frame Tµνuν = −εuµ

πµν = uµV ν
A + πµνS

Where πµνS uν = 0
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- There are many possible derivative terms that can

enter in V µ
A , even at first order

- We can constrain them by demanding that there is

an entropy current with positive divergence

∂µj
µ
s ≥ 0

- The equation for the entropy current can be

derived from the hydrodynamic equations

∂µT
µνuν + µ∂µJ

µ = FµνuµJν = −EνJν
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Parity preserving fluid

- The entropy current takes the form

jµs = suµ − µ

T
νµ

- The divergence is

∂µj
µ
s = − 1

T
πµνS ∂µuν + νµ

[
Eµ
T
− ∂µ

(µ
T

)]
− 1

T
V µ
Aaµ

Where aµ = uα∂αu
µ is the acceleration of the fluid
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- Since ∂µj
µ
s ≥ 0 any explicit derivative term should be

squared, and no other terms are allowed

V µ
A = −Tα1a

µ − Tα2

[
Eµ

T
− Pµν∂ν

(µ
T

)]

νµ = −α3a
µ + σT

[
Eµ

T
− Pµν∂ν

(µ
T

)]
πµνS = −ησµν − ζPµν(∂αu

α)

- The divergence depends only on α− = (α2 − α3)/2
Onsager’s relations (time reversal symmetry)

would fix α+ = (α2 + α3)/2 = 0

- The positivity constraints are

σ ≥ 0, η ≥ 0, ζ ≥ 0, σTα1 ≥ α2
−
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Parity breaking fluid

- We will work in 3 + 1 dimensions

ωµ =
1

2
εµαβγuα∂βuγ , Bµ =

1

2
εµαβγuαFβγ

- The entropy current can be modified by additional

parity-breaking terms

jµs = suµ − µ

T
νµ +Dωµ +DBB

µ
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- The divergence becomes

∂µj
µ
s = − 1

T
πµνS ∂µuν + νµ

[
Eµ
T
− ∂µ

(µ
T

)]
− 1

T
V µ
Aaµ

+ωµ
(
∂µD −

2D

ε+ p
∂µp+ 2

(
qD

ε+ p
−DB

)
Eµ

)
+Bµ

(
∂µDB −

DB

ε+ p
∂µp+

qDB

ε+ p
Eµ

)
- Since all the parity breaking terms appear linearly,

they should cancel out with terms from νµ and V µ
A

- Anomalous current: ∂µJ
µ = CEµB

µ
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(
qD

ε+ p
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)
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ε+ p
∂µp+

qDB

ε+ p
Eµ−C

µ

T
Eµ

)
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- To the derivative terms we had before we should

add the parity breaking terms

V µ
A,P/ = −Tβωµ − TβBBµ

νµP/ = ξωµ + ξBB
µ

- The condition ∂µj
µ
s ≥ 0 can be satisfied, this fixes D,

DB , ξ and ξB in terms of β, βB and the anomaly

coefficient C

- Even if C = 0 the coefficients ξ and ξB are

non-zero if β, βB are non-zero

- Chiral Magnetic and Vortical Effects without

anomalies!
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Summary so far

- Hydrodynamic analysis reveals that Lifshitz fluids
have exotic transport properties:

• New terms depending on the acceleration of the

fluid aµ

• Chiral Effects without anomalies

- We can extend the analysis to superfluids,

essentially the new terms depend on the

acceleration aµ

What is the phenomenology of the new terms?
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Non-relativistic limit
- Condensed matter systems are not relativistic:

take c→∞ limit

uµ =

(
1 +

v2

2c

)(
1,
vi

c

)
, ε = ρc2 + U − ρv

2

2

q = ρc− ρv
2

2c
, µ = c+

µNR

c

- This has to be done in the Eckart frame

uµ −→ uµ − 1
qν

µ ⇒ Jµ = quµ

Tµν = εuµuν + pPµν + uµV ν
A + πµνS −

ε+ p

q
(uµνν + uννµ)

Galilean invariant: [Kaminski,Moroz; Jensen,Karch]
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Hydrodynamic equations

- Continuity equation (mass conservation)

∂tρ+ ∂i(ρv
i) = 0

- Momentum conservation equation

(Navier-Stokes)

∂t
(
ρvi − αai + βωi

)
+ ∂k

(
(ρvi − αai + βωi)vk

)
+ ∂ip

= ρ
(
Ei + εijkvjBk

)
− ∂k

(
ησki

)
− ∂i

(
ζ∂kv

k
)

Where ai = Dtv
i = (∂t + vk∂k)v

i and ωi = 1
2ε
ijk∂jvk

- Energy conservation
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- Galilean boost invariance is broken

J i = ρvi 6= T 0i = ρvi − αai + βωi

- Lifshitz scaling [∂t] = z, [∂i] = 1

[ρ] = d+ 2− z, [p] = [U ] = z + d

[T ] = z, [µNR ] = 2(z − 1), [vi] = z − 1

[Ei] = 2z − 1, [Bi] = z

Note that ρ is the mass density and the

electromagnetic fields include the factor e/m

- Symmetry algebra: Lifshitz + conserved charge

[D,H] = −zH, [D,Pi] = −Pi, [D,N ] = (z − 2)N
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Drude model
The electronic transport of normal metals can be

understood as a gas of free electrons (actually

quasiparticles) scattering with heavy objects (lattice

ions, impurities)
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The electrons in a strange metal are strongly coupled,

they cannot be approximated by a free gas. We expect

them to behave as an almost perfect liquid moving

through a porous medium
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- We parametrize the effect of the medium by a

drag term in the equations of motion

∂t
(
ρvi − αai + βωi

)
+ ∂k

(
(ρvi − αai + βωi)vk

)
+ ∂ip

= −λρvi + ρ
(
Ei + εijkvjBk

)
− ∂k

(
ησki

)
− ∂i

(
ζ∂kv

k
)

- λ is the inverse of the electron mobility [λ] = z .
For Bi = 0 and Ei = constant

J i = ρvi = σxxE
i =

ρ

λ
Ei

- This predicts naturally ρxx ∼ T at high temperatures

for any dimension

Although the right effective theory may have

anomalous scalings [Hartnoll, Karch; Khveshchenko]
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- Possible experiment: linearly polarized light source

Ex = E(y)eiωt+E∗(y)e−iωt, By(y) = B(y)eiωt+B∗(y)e−iωt

- The AC velocity produced by the electric field has

the form

vAC = Vi(y)eiωt + V ∗
i (y)e−iωt

(−η∂2y + λρ+ αω2 + iρω)Vx +
iωβ

2
∂yVz = ρE

(−η∂2y + λρ+ αω2 + iρω)Vz −
iωβ

2
∂yVx = 0

- Non-linear effects in the fluid produce a DC

current

(−η∂2y + λρ)viDC = ρεijk(VjB
∗
k + V ∗

j Bk)
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- For β = 0, vxDC = 0 and vzDC 6= 0. In fact,

~JDC ∝ ~E × ~B

⇒ Photon drag effect

- For β 6= 0, vxDC 6= 0

~Jχ,DC ∝ β(~∇× ~E)× ~B

⇒ Chiral photon drag effect
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Assuming electrons are the only mobile particles, the

chiral effect is allowed only if

• Parity is broken

• There is no Galilean boost invariance

Smoking gun of parity breaking Lifshitz fluid

C. Hoyos Lifshitz hydrodynamics



If parity is not broken the distinction between Lifshitz

and others becomes more difficult to measure. Some

new effects are

- Non-linear effects: dependence of the conductivity

on electric field

- Frequency dependence of penetration depth in the

metal

- Anisotropic contributions to the heat current in

superfluids

To do: parity breaking Lifshitz fluids in 2 + 1 dimensions
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ευχαριστώ!
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