BPS Black Holes in AdS $_{4}$-NUT

Nick Halmagyi

CNRS
and
Laboratoire de Physique Théorique et Haute Energies, Université Pierre et Marie Curie

Thessaloniki, February 17th 2015

based on work done since 2013 with Harold Erbin, Alessandra Gnecchi, Michela Petrini, Thomas Vanel, Alberto Zaffaroni

Motivation

- Asymptotically flat BPS black holes have triggered great advances in our understanding of BH entropy and string theory in general
- Black holes in AdS_{d+1} should in principle admit a study from the dual CFT_{d} but BPS black holes have proved to be rare finds.
- Gutowski-Reall BPS rotating black hole in 5d and various limits of the Plebanski-Demianski solution in 4d
- Motivated in part by search for ground states for AdS/CMT
- Can we construct supersymmetric black holes in AdS space much like their flat space cousins? Multiple centers requires running scalar fields
- Could they be related to a topological string on flux backgrounds

Four Dimensional Black Holes in Einstein-Maxwell Theory

Demianski-Plebanski (1976) produced a solution of Einstein-Maxwell theory which unified all previous known black holes with the following parameters:

- \wedge : cosmological constant
- M : mass
- N : NUT charge
- P : magnetic charge
- Q: electric charge
- J: angular momentum
- a: acceleration

In addition there is a parameter $\kappa=\{-1,0,1\}$ for the curvature of the horizon $\left\{\mathbb{H}^{2} / \Gamma, \mathbb{R}^{2} / \Gamma^{\prime}, S^{2}\right\}$

TABLE I
Known exact solutions of the Einstein and Einstein-Maxwell Equations of type D

$m+i n, a+i b, e+i g, \lambda$ $m+i n, a, e+i g, \lambda$ $m+i n, a+i b, e+i g$ $m+i n, b, e+i g, \lambda$ Plcbanski [3] Kinnersley $[2]$			
$\begin{array}{r} m+i n, a, e \lambda \\ \text { Carter [11] } \end{array}$	$\begin{aligned} & m+i n, a, e+i g \\ & \quad \text { Demianski, Newman [12] } \end{aligned}$	$\begin{gathered} m+i n, a+i b, \lambda \\ \quad \text { Carter [11] } \end{gathered}$	$\begin{gathered} m+i n, b, e, \lambda \\ \text { Carter [11] } \end{gathered}$
$\begin{gathered} m+i n, a, \lambda \\ \text { Frolov [22] } \end{gathered}$		$\begin{gathered} m+i n, a+i b \\ \quad \text { Kinnersley }[13] \end{gathered}$	$m+i n, b, e$ Levi-Civita [4] Newman, Tamburino [5] Robinson, Trautman [6] Ehlers, Kundt [5]
m, a, λ Demianski [14] m, a, e Pewman et. $[10]$ Ernst [25] $[26]$	$m+i n, a$ Demianski [15] Kramer, Neugebauer [24] Robinson, J. Robinson Zund [27]	$\begin{gathered} m+i n, e \\ \quad \text { Brill [23] } \end{gathered}$	$m+i n, \lambda$ Demianski [16] Frolov [22]
m, λ m, e Kottler [17] Reisner, Nordstrom [18]	$\begin{aligned} & m, a \\ & \quad \text { Kerr [9] } \end{aligned}$	$m+i n$ Newman, Tamburino, Unti [19] Taub [21]	e, b Bertotti [28] Robinson [29]
λ de Sitter [30]		m Schwarzschild	

DP Solution in Minimal Gauged Sugra:

$$
\{\Lambda, M, Q, P\}
$$

- Minimal gauged sugra: $\left(g_{\mu \nu}, A_{\nu}, \Psi_{\mu}\right)$

The bosonic sector is Einstein-Maxwell theory

- Romans (1992) studied the parameters (Λ, M, Q, P) in minimal gauged sugra. In other words, the DP solution with

$$
N=J=a=0
$$

- The metric is

$$
\begin{aligned}
d s_{4}^{2} & =-e^{2 U} d t^{2}+e^{-2 U} d r^{2}+r^{2} d \Omega_{2}^{2} \\
e^{2 U} & =\frac{1}{r^{2}}\left(-\frac{\Lambda}{3} r^{4}+r^{2}-2 M r+Z^{2}\right)
\end{aligned}
$$

- Three important issues: BPS, supersymmetry and extremality
- $\mathrm{SUSY} \Rightarrow$ BPS but BPS \nRightarrow SUSY
- $\mathrm{SUSY} \Rightarrow\left\{\begin{array}{l}\mathrm{P}=0 \text { naked singularity } \\ \mathrm{M}=0 \text { naked singularity }\end{array}\right.$

DP Solution in Minimal Gauged Sugra:

$$
\{\Lambda, M, Q, P, J\}
$$

- Kostelecky-Perry (1995) include rotation into the analysis of Romans, so they have DP solution with

$$
(M, N=0, P, Q, J, a=0)
$$

- They find a BPS bound

$$
M \geq|Z|+g|J|
$$

- Caldarelli-Klemm (1998) checked integrability and found that mag charge must vanish $P=0$
- Nonetheless there exist 4d BPS rotating black holes, regularity of the solutions puts a lower bound on J, no static limit.
- BPS bounds in 4d examined by Hristov-Toldo-Van Doren (2012)

$$
\begin{aligned}
& P=0: M \geq Q+g|J| \\
& P \neq 0: M \geq 0
\end{aligned}
$$

DP Solution in Minimal Gauged Sugra $\{\Lambda, M, N, Q, P\}$

- The integrability conditions were computed for the general DP solution Ortin et al. (2000)
- (M, N, Q, P) preserves $S U(2) \times U(1)($ or $S L(2, \mathbb{R}) \times U(1))$
- There are two branches of supersymmetric solutions
- quarter-BPS solutions: susy parameters are singlets under the symmetry of the horizon $\mathfrak{s l}_{2}(\mathbb{R})$, which has no analogue in asymptotically flat space
- half-BPS solutions: susy parameters are doublets, generalizing the asymptotically flat BPS solutions.

DP Solution in Minimal Gauged Sugra: $\{\Lambda, M, N, Q, P, J, a\}$

- (J, a) break $S U(2) \times U(1) \rightarrow U(1) \times U(1)$
- Killing spinor computed with $M=N$ Martelli, Passias (2013)
- sufficiency of integrability shown Klemm-Ozawa (2013)
- no half-BPS conditions due to breaking of $S U(2)$

Holography for Demianski-Plebanski

Martelli, Passias, Sparks et al (2011-2013)
In various limits, they

- obtain the Euclidean continuation of the supersymmetric Demianski-Plebanski solution
- compute the four dimensional on-shell action
- compare to the strong coupling limit of the supersymmetric free-energy of ABJM on M_{3}, where SUSY is preserved in an $S U(4)$ invariant manner
- M_{3} is a fibration of S^{1} over S^{2} where the fiber is stretched and the S^{2} is squashed
Nishioka (2014)
- computes super-Renyi entropy on $S^{1} \times \Sigma_{g}$ and compares to euclidean on-shell action for DP with (Λ, M, P) and $\kappa=-1$

PD as Deformation of AdS_{4}

It is instructive to consider the PD solution as a deformation of the asymptotic ground state, AdS_{4} :

Metric Deformations

(ℓ, m)	Non-Normalizable	Normalizable
$(0,0)$	Temp T	Mass M
$(1,0)$	NUT N	\times
$(2,0)$	\times	Rotation J
$(3,0)$	Acceleration a	\times

Gauge Field Deformations

$$
A \sim \frac{Q}{r} d t+P \cos \theta d \phi
$$

(ℓ, m)	Non-Normalizable	Normalizable
$(0,0)$	Constant gauge transformation	Electric Charge Q
$(1,0)$	Magnetic Charge P	\times

Black Holes with Scalar Fields

- Duff-Liu (1998): superstars in 4d $\mathcal{N}=8$ gauged sugra. These are singular half-BPS asympt' AdS

$$
\left\{M, q_{\wedge} \mid N=0, q_{\Lambda}=0, J=0, a=0\right\}
$$

- Generalized to non-BPS regular black holes in STU-model Chong-Cvetic-Lu-Pope (2005). They have the solution with

$$
\left\{M, N, q_{0}=q_{1}, q_{2}=q_{3}, J \mid p^{\wedge}=0, a=0\right\}
$$

found by "inspired guesswork" modelled on black holes in ungauged sugra

- Rotating case in Chow-Compere (2013) and Gnecchi,Klemm,Hristov, Toldo, Vaughn (2013)

$$
\left\{M, p^{0}=p^{1}, p^{2}=p^{3}, q_{0}=q_{1}, q_{2}=q_{3}, J \mid a=0\right\}
$$

- Static case developed further in Chow-Compere (2013) with

$$
\left\{M, p^{\wedge}, q_{\wedge} \mid N=0, J=0, a=0\right\}
$$

Regular SUSY Black Holes with Scalar Fields

- A substantial development was Cacciatori-Klemm (2009) who considered the STU model of $\mathcal{N}=2$ gauged supergravity with the metric ansatz

$$
\begin{aligned}
d s_{4}^{2} & =-e^{2 U} d t^{2}+e^{-2 U} d r^{2}+e^{2(V-U)} d \Sigma_{g}^{2} \\
e^{V} & =r\left(\frac{r}{R}+v_{0}\right), \quad v_{0}>0 .
\end{aligned}
$$

- Recall that in the DP solution

$$
g_{t t} g_{\theta \theta}=P_{4}(r)
$$

a fourth order polynomial in r. The CK solution has

$$
P_{4}(r)=P_{2}(r)^{2}
$$

- The CK solution has four magnetic charges and one constraint from Dirac quantization
- For the one-modulus example $F=-X^{0} X^{1}$ and $q_{\Lambda}=0$, Colleoni-Klemm (2013) have included NUT charge

Wrapped Branes

- To give perspective to these solutions of Cacciatori-Klemm one looks to the work of Maldacena-Nunez (2000)
- Conformal M2 brane theory has $S O$ (8) (BLG) or $S U(4) \times U(1)$ R-symmetry $(A B J M)$
- We can study this field theory on $\mathbb{R} \times \Sigma_{g}$ and supersymmetry is preserved by twisting
- The Cartan subgroup of the R-symmetry group is $U(1)^{4}$ and we twist by $U(1)$, structure group of Σ_{g}
- equivalent to twisting four line bundles over Σ_{g}, the four Chern numbers must satisfy

$$
\sum_{\Lambda=0}^{3} p^{\wedge}=2-2 g
$$

to preserve the $C Y_{5}$ condition and thus supersymmetry

- M5-branes wrapped on Σ_{g} give AdS_{7} black 3-branes which are known numerically. The dual SCFT has $\mathcal{N}=2$ Gaiotto (2009) or $\mathcal{N}=1$ Bah-Beem-Bobev-Wecht (2012) in four dimensions
- D3-branes wrapped on Σ_{g} give AdS_{5} black strings. The solutions are known numerically, recently the dual $(0,2)$ SCFT was studied and its central charge computed Benini-Bobev (2013). Constant scalar black string is known analytically Chamseddine-Sabra (2001)
- D4-D8 system wrapped on Σ_{g} gives AdS_{6} black 2-branes, Nunez et al (2001)
- Numerous more complicated AdS black objects are known with more elaborate embeddings into string/M-theory.
- Gauged sugra with hypermultiplets Halmagyi, Petrini, Zaffaroni (2013) lifts to M2 - M5 bound state wrapped

M-theory lift

In one particular duality frame the STU model has prepotential

$$
F=-2 i \sqrt{X^{0} X^{1} X^{2} X^{3}}
$$

and is a consistent truncation of the $\mathrm{N}=8$, de-Wit Nicolai theory Cvetic et al (1999). This in turn is a consistent truncation of M-theory on S^{7}

- M: tension of M2 branes
- N : D6 branes in IIA, squashing of bdy M_{3} and or orbifolding
- p^{\wedge} : quantized twists of S^{7} over Σ_{g}
- q_{Λ} : rotation along $U(1)^{4}$ of S^{7}
- J: rotation in 4d spacetime
- a: squashing of boundary M_{3}

The CK solutions have $q_{\Lambda}=0$, we would like the supersymmetric solution for general $\left(p^{\wedge}, q_{\wedge}, N, M\right)$

Symplectic Covariance

- Dall'agata and Gnecchi (2010) present a duality covariant formulation of static black holes in $\mathcal{N}=2$ gauged sugra

$$
\mathcal{G}=\binom{g^{\Lambda}}{g_{\Lambda}}, \quad \mathcal{Q}=\binom{p^{\Lambda}}{q_{\Lambda}}
$$

- The formalism transforms covariantly (not invariantly) under $S p\left(2 n_{v}+2, \mathbb{R}\right)$

$$
\Lambda \in \operatorname{Sp}\left(2 n_{v}+2, \mathbb{R}\right), \quad \mathcal{G} \rightarrow \Lambda \mathcal{G}, \quad \mathcal{Q} \rightarrow \Lambda \mathcal{Q}
$$

- if there is a prepotential it transforms non-linearly
- \mathcal{G} specifies the theory, \mathcal{Q} specifies a selection sector of the vacuum. Acting with Λ generates a different but equivalent theory.
- The STU which embeds into M-theory has

$$
\mathcal{G}=\binom{g^{\wedge}}{g_{\Lambda}}, \quad g^{\wedge}=-\left(\begin{array}{l}
0 \\
g \\
g \\
g
\end{array}\right), \quad g_{\Lambda}=\left(\begin{array}{l}
g \\
0 \\
0 \\
0
\end{array}\right)
$$

There exists a one parameter deformation of the $S O(8)$ de-Wit Nicolai theory. On the truncation to the STU-model ω corresponds to a symplectic rotation of \mathcal{G} by Lu-Pang-Pope (2014)

$$
\mathcal{G} \rightarrow \mathcal{O}_{\omega} \cdot \mathcal{G}, \quad \mathcal{O}=\left(\begin{array}{cc}
\mathbb{1} \cos \omega & \mathbb{1} \sin \omega \\
-\mathbb{1} \sin \omega & \mathbb{1} \cos \omega
\end{array}\right)
$$

Very Special Geometry

- We consider theories where \mathcal{M}_{v} is a very special geometry

$$
F=-d_{i j k} \frac{X^{i} X^{j} X^{k}}{X^{0}}
$$

- \mathcal{M}_{v} is a symmetric space
- sporadic cases

$$
\begin{aligned}
& {\left[\frac{S U(1,1)}{U(1)}\right]^{2}, \quad\left[\frac{S U(1,1)}{U(1)}\right]^{3}, \quad \frac{S p(6)}{U(3)}, \quad \frac{E_{7}}{E_{6} \otimes U(1)}} \\
& \frac{S U(3,3)}{S U(3) \otimes S U(3) \otimes U(1)}, \quad \frac{S O(12)}{S U(6) \otimes U(1)}
\end{aligned}
$$

- infinite series

$$
\frac{S U(1,1)}{U(1)} \otimes \frac{S O(P+2,2)}{S O(P) \otimes S O(2)}
$$

- Several more infinite families if one allows for homogeneous spaces Van Proeyen/de Wit (1992)

Static Black Holes and Special Geometry

The metric ansatz is

$$
d s_{4}^{2}=-e^{2 U}(d t+2 N \cos \theta d \phi)^{2}+e^{-2 U} d r^{2}+e^{2(V-U)} d \Sigma_{g}^{2}
$$

The BPS Equations are

$$
\begin{aligned}
2 e^{V} \partial_{r}(\operatorname{Im} \widetilde{\mathcal{V}}) & =I_{4}^{\prime}(\mathcal{G}, \operatorname{Im} \widetilde{\mathcal{V}}, \operatorname{Im} \widetilde{\mathcal{V}})+2 N \kappa \mathcal{G} r-\mathcal{Q} \\
\partial_{r}\left(e^{V}\right) & =2\langle\mathcal{G}, \operatorname{Im} \widetilde{\mathcal{V}}\rangle \\
3 N \kappa e^{V}+2\langle\mathcal{Q}, \operatorname{Im} \widetilde{\mathcal{V}}\rangle & =-2 e^{v}\left\langle\operatorname{Im} \widetilde{\mathcal{V}}, \partial_{r}(\operatorname{Im} \widetilde{\mathcal{V}})\right\rangle+4 N_{\kappa r}\langle\mathcal{G}, \operatorname{Im} \widetilde{\mathcal{V}}\rangle \\
\langle\mathcal{G}, \mathcal{Q}\rangle & =-\kappa \quad(\in \mathbb{Z} \text { Dirac Qu. })
\end{aligned}
$$

where $\widetilde{\mathcal{V}}=e^{V-U} e^{-i \psi} \mathcal{V}$

- the scalar fields only appear through $\operatorname{Im} \widetilde{\mathcal{V}}$
- The $\mathcal{G} \rightarrow 0$ limit reproduces the flat space attractor equations
- from $\operatorname{Im} \widetilde{\mathcal{V}}$ and e^{V} we can obtain e^{U} and $\operatorname{Re} \widetilde{\mathcal{V}}$ (and thus z^{i})

$$
e^{4(V-U)}=\frac{3}{2} I_{4}(\operatorname{Im} \widetilde{\mathcal{V}}), \quad \quad \operatorname{Re} \widetilde{\mathcal{V}}=2 e^{2(U-V)} I_{4}^{\prime}(\operatorname{Im} \widetilde{\mathcal{V}})
$$

Quartic Invariant

- The quartic invariant is known from flat space BPS black holes

$$
\begin{gathered}
I_{4}(\mathcal{Q})=-\left(p^{\wedge} q_{\Lambda}\right)^{2}-\frac{1}{16} p^{0} \widehat{d}^{i j k} q_{i} q_{j} q_{k}+4 q_{0} d_{i j k} p^{i} p^{j} p^{k}+\frac{9}{16} d_{i j k} \widehat{d}^{i l m} p^{j} p^{k} q_{l} q_{m} \\
\widehat{d}^{i j k}=\frac{g^{i m} g^{j n} g^{k p} d_{m n p}}{\left(d_{r s t} y^{r} y^{s} y^{t}\right)^{2}}
\end{gathered}
$$

- this gives a four index symmetric tensor

$$
t^{M N R S}=\partial^{M} \partial^{N} \partial^{R} \partial^{S} I_{4}(\mathcal{Q}), \quad \partial^{M}=\frac{\partial}{\partial \mathcal{Q}_{M}}
$$

- then we define the derivative of this tensor

$$
I_{4}^{\prime}(A, B, C)_{M}=\Omega_{M N} t^{N Q R S} A_{Q} B_{R} C_{S}
$$

and

$$
I_{4}(A, B, C, D)=t^{M N Q R} A_{M} B_{N} C_{Q} D_{R}
$$

- The AdS_{4} entropy is given by

$$
R_{\mathrm{AdS}_{4}}^{-4}=I_{4}(\mathcal{G})
$$

Horizon Equations

- Metric

$$
d s_{4}^{2}=R_{1}^{2} d s_{A d s_{2}}^{2}+R_{2}^{2} d \Sigma_{g}^{2}
$$

- Define the complexified charges

$$
\mathfrak{p}^{\wedge}=p^{\wedge}+i R_{2}^{2} g^{\wedge}, \quad \mathfrak{q}_{\Lambda}=q_{\Lambda}+i R_{2}^{2} g_{\Lambda}
$$

and the quantities

$$
\Pi_{j}=d_{i j k} \mathfrak{p}^{k} \mathfrak{p}^{k}-\frac{1}{3} \mathfrak{p}^{0} \mathfrak{q}_{i}
$$

- the scalar fields are given by

$$
\begin{aligned}
z^{i} & =\frac{\mathfrak{p}^{i}+\overline{\widehat{\mathcal{Z}}}^{i}}{\mathfrak{p}^{0}} \\
\overline{\widehat{\mathcal{Z}}}^{i} & =\frac{1}{2} \frac{\widehat{d}^{i j k} \Pi_{j} \Pi_{k}}{\sqrt{\widehat{d}^{I m n} \Pi_{l} \Pi_{m} \Pi_{n}}}
\end{aligned}
$$

- The radii can also be solved for

$$
e^{i \psi} \frac{R_{2}^{2}}{R_{1}}=\frac{\mathfrak{p}^{0}}{2 i e^{K / 2}}-6 e^{K / 2} d_{i j k} \overline{\widehat{\mathcal{Z}}}^{i} y^{j} y^{k}
$$

- Finally the radius R_{2} from which we get the entropy, is found from the solution to

$$
I_{4}(\widehat{\mathcal{Q}})=0, \quad \widehat{\mathcal{Q}}=\binom{\mathfrak{p}^{\wedge}}{\mathfrak{q}_{\wedge}}
$$

which gives

$$
R_{2}^{4}=\frac{I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{Q}, \mathcal{Q}) \pm \sqrt{I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{Q}, \mathcal{Q})^{2}-I_{4}(\mathcal{G}) I_{4}(\mathcal{Q})}}{I_{4}(\mathcal{G})}
$$

- there is one constraint

$$
\begin{aligned}
0= & I_{4}(\mathcal{Q}) I_{4}(\mathcal{Q}, \mathcal{G}, \mathcal{G}, \mathcal{G})^{2}+I_{4}(\mathcal{G}) I_{4}(\mathcal{Q}, \mathcal{Q}, \mathcal{Q}, \mathcal{G})^{2} \\
& -I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q}) I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{Q}, \mathcal{Q}) I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{G}, \mathcal{Q})
\end{aligned}
$$

Comments

- The charges are large in Planck units but not in AdS units.
- The large entropy comes from the large AdS_{4} radius
- For the STU-model this of course comes from the large number of M2-branes
- We can do better and solve the whole black hole...

Static $\frac{1}{4}$-BPS Black Holes with Dyonic Charges

N.H. and Alessandra Gnecchi 1312.2766
N.H. 1408.2831
N.H. and Harold Erbin 1502.XXXX

Pair of real double roots

$$
e^{2 V}=r^{2}\left(\frac{r}{R_{A d S_{4}}}+\sqrt{V_{2}}\right)^{2}, \quad \operatorname{Im} \tilde{\mathcal{V}}=\frac{1}{\left\langle\mathcal{G}, A_{1}\right\rangle} A_{1}+r A_{3}
$$

- The whole solution is given by the UV and IR boundary conditions
- The NUT charge is non-normalizable but still subleading in the BPS equations
- BPS equations vastly overdetermined but nonetheless one can find analytic solutions
The UV solution is AdS_{4}

$$
A_{3}=\frac{I_{4}^{\prime}(\mathcal{G})}{4 I_{4}(\mathcal{G})^{1 / 4}}, \quad R_{\mathrm{AdS}_{4}}=I_{4}(\mathcal{G})^{-3 / 4}
$$

The IR solution is given by

$$
A_{1}=a_{1} I_{4}^{\prime}(\mathcal{G}, \mathcal{G}, \mathcal{G})+a_{2} I_{4}^{\prime}(\mathcal{G}, \mathcal{G}, \mathcal{Q})+a_{3} I_{4}^{\prime}(\mathcal{G}, \mathcal{Q}, \mathcal{Q})+a_{4} I_{4}^{\prime}(\mathcal{Q}, \mathcal{Q}, \mathcal{Q})
$$

with

$$
\begin{aligned}
& a_{3}=-\frac{a_{3} I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q})}{3 I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{G}, \mathcal{Q})} \\
& a_{3}=\frac{a_{3}}{6} \frac{I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{G}, \mathcal{Q}) I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q})^{2}}{I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{G}, \mathcal{Q})^{2} I_{4}(\mathcal{Q})-I_{4}(\mathcal{G}) I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q})^{2}} \\
& a_{3}=\frac{9\left(I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q}) I_{4}(\mathcal{G})-I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{G}, \mathcal{Q}) I_{4}(\mathcal{Q})\right)}{\left.I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q}) I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q})\left[I_{4}^{\prime}(\mathcal{G}, \mathcal{G}, \mathcal{G}), I_{4}^{\prime}(\mathcal{Q}, \mathcal{Q}, \mathcal{Q})\right\rangle+\kappa I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{Q}, \mathcal{Q})\right]} \\
& a_{3}=
\end{aligned}
$$

Since we enforced that the IR is of the form $\mathrm{AdS}_{2} \times \Sigma_{g}$ we have one constraint from the horizon solution

$$
\begin{aligned}
0= & I_{4}(\mathcal{Q}) I_{4}(\mathcal{Q}, \mathcal{G}, \mathcal{G}, \mathcal{G})^{2}+I_{4}(\mathcal{G}) I_{4}(\mathcal{Q}, \mathcal{Q}, \mathcal{Q}, \mathcal{G})^{2} \\
& -I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q}) I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{Q}, \mathcal{Q}) I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{G}, \mathcal{Q})
\end{aligned}
$$

The metric is given by

$$
v_{2}=\sqrt{2\left\langle\mathcal{G}, A_{1}\right\rangle}
$$

The NUT charge is fixed by the equations between UV and IR

$$
\begin{aligned}
& N \kappa=-\frac{I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{G}, \mathcal{Q})^{2} I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q})}{144 \sqrt{2} I_{4}(\mathcal{G})^{1 / 4}} \times \\
& {\left[18\langle\mathcal{G}, \mathcal{Q}\rangle I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{Q}, \mathcal{Q})-\left\langle I_{4}^{\prime}(\mathcal{Q}, \mathcal{Q}, \mathcal{Q}), I_{4}^{\prime}(\mathcal{G}, \mathcal{G}, \mathcal{G})\right\rangle\right]^{1 / 2} \times} \\
& {\left[\left(I_{4}(\mathcal{G}) I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q})^{2} I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{G}, \mathcal{Q})^{2} I_{4}(\mathcal{Q})\right)^{2}+16\left[I_{4}(\mathcal{G}, \mathcal{G}, \mathcal{G}, \mathcal{Q}) I_{4}(\mathcal{G}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q})\right]^{3}\right]^{1 / 2}}
\end{aligned}
$$

Single Double Root

- More generally, there are solutions with only a single double root in $e^{2 V}$
- This double root ensures an $\mathrm{AdS}_{2} \times \Sigma_{g}$ IR horizon region
- The ansatz is then

$$
e^{2 V}=r^{2}\left(\frac{r^{2}}{R_{A d S_{4}}^{2}}+v_{3} r+v_{2}\right)
$$

The sections are

$$
\operatorname{Im} \widetilde{\mathcal{V}}=e^{-V}\left[A_{1} r+A_{2} r^{2}+A_{3} r^{3}\right]
$$

where

$$
\begin{aligned}
& A_{1}=a_{1} I_{4}^{\prime}(\mathcal{G}, \mathcal{G}, \mathcal{G})+a_{2} I_{4}^{\prime}(\mathcal{G}, \mathcal{G}, \mathcal{Q})+a_{3} I_{4}^{\prime}(\mathcal{G}, \mathcal{Q}, \mathcal{Q})+a_{4} I_{4}^{\prime}(\mathcal{Q}, \mathcal{Q}, \mathcal{Q}) \\
& A_{2}=b_{1} I_{4}^{\prime}(\mathcal{G}, \mathcal{G}, \mathcal{G})+b_{2} I_{4}^{\prime}(\mathcal{G}, \mathcal{G}, \mathcal{Q})+b_{3} I_{4}^{\prime}(\mathcal{G}, \mathcal{Q}, \mathcal{Q})+b_{4} I_{4}^{\prime}(\mathcal{Q}, \mathcal{Q}, \mathcal{Q})
\end{aligned}
$$

Comments

- With a single double root the solution for A_{2} is somewhat complicated but totally explicit
- The NUT charge is then arbitrary, the b_{i} but not the a_{i}, depend non-trivially on N
- The IR region is still $\mathrm{AdS}_{2} \times \Sigma_{g}$
- When the NUT charge satisfies the previous constraint, the solution will degenerate to a pair of double roots
- In principle we could have four complex roots (two conjugate paris). Indeed, this is the root structure of the constant scalar solution

Conclusions and Future Work

- Half BPS branch of solutions for static black holes
- NUT charge should resolve the singular superstar geometry while preserving half-BPS
- Fully BPS horizon geometries?
- Scalar hair, our ansatz has picked out certain solutions
- Euclidean continuation of general solution with running scalars, computation of on-shell action
- Partition function for general twists of ABJM
- multiple centers for (M, N); multipole moments and/or separated M2-branes in eleven dimensions?
- BPS gauged sugra solutions with (J, a) and running scalars
- Generating rotation from 3d reduction in gauged sugra

