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Motivation

Asymptotically flat BPS black holes have triggered great
advances in our understanding of BH entropy and string
theory in general

Black holes in AdSd+1 should in principle admit a study from
the dual CFTd but BPS black holes have proved to be rare
finds.

Gutowski-Reall BPS rotating black hole in 5d and various
limits of the Plebanski-Demianski solution in 4d

Motivated in part by search for ground states for AdS/CMT

Can we construct supersymmetric black holes in AdS space
much like their flat space cousins? Multiple centers requires
running scalar fields

Could they be related to a topological string on flux
backgrounds
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Four Dimensional Black Holes in Einstein-Maxwell Theory

Demianski-Plebanski (1976) produced a solution of Einstein-Maxwell
theory which unified all previous known black holes with the
following parameters:

Λ: cosmological constant

M: mass

N: NUT charge

P: magnetic charge

Q: electric charge

J: angular momentum

a: acceleration

In addition there is a parameter κ = {−1, 0, 1} for the curvature of
the horizon {H2/Γ,R2/Γ′,S2}
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DP Solution in Minimal Gauged Sugra:
{Λ,M ,Q,P}

Minimal gauged sugra: (gµν ,Aν ,Ψµ)
The bosonic sector is Einstein-Maxwell theory
Romans (1992) studied the parameters (Λ,M,Q,P) in minimal
gauged sugra. In other words, the DP solution with

N = J = a = 0

The metric is

ds2
4 = −e2Udt2 + e−2Udr2 + r2dΩ2

2

e2U =
1

r2

(
− Λ

3
r4 + r2 − 2Mr + Z 2

)
Three important issues: BPS, supersymmetry and extremality
SUSY ⇒ BPS but BPS ⇒/ SUSY

SUSY ⇒

{
P=0 naked singularity

M=0 naked singularity
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DP Solution in Minimal Gauged Sugra:
{Λ,M ,Q,P , J}

Kostelecky-Perry (1995) include rotation into the analysis of
Romans, so they have DP solution with

(M,N = 0,P,Q, J, a = 0)

They find a BPS bound

M ≥ |Z |+ g |J|

Caldarelli-Klemm (1998) checked integrability and found that
mag charge must vanish P = 0

Nonetheless there exist 4d BPS rotating black holes, regularity
of the solutions puts a lower bound on J, no static limit.

BPS bounds in 4d examined by Hristov-Toldo-Van Doren (2012)

P = 0 : M ≥ Q + g |J|
P 6= 0 : M ≥ 0

6 / 29



DP Solution in Minimal Gauged Sugra
{Λ,M ,N ,Q,P}

The integrability conditions were computed for the general DP
solution Ortin et al. (2000)

(M,N,Q,P) preserves SU(2)× U(1) (or SL(2,R)× U(1) )

There are two branches of supersymmetric solutions

quarter-BPS solutions: susy parameters are singlets under the
symmetry of the horizon sl2(R), which has no analogue in
asymptotically flat space

half-BPS solutions: susy parameters are doublets, generalizing
the asymptotically flat BPS solutions.
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DP Solution in Minimal Gauged Sugra:
{Λ,M ,N ,Q,P , J , a}

(J, a) break SU(2)× U(1)→ U(1)× U(1)

Killing spinor computed with M = N Martelli, Passias (2013)

sufficiency of integrability shown Klemm-Ozawa (2013)

no half-BPS conditions due to breaking of SU(2)
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Holography for Demianski-Plebanski

Martelli, Passias, Sparks et al (2011-2013)

In various limits, they

obtain the Euclidean continuation of the supersymmetric
Demianski-Plebanski solution

compute the four dimensional on-shell action

compare to the strong coupling limit of the supersymmetric
free-energy of ABJM on M3, where SUSY is preserved in an
SU(4) invariant manner

M3 is a fibration of S1 over S2 where the fiber is stretched
and the S2 is squashed

Nishioka (2014)

computes super-Renyi entropy on S1 × Σg and compares to
euclidean on-shell action for DP with (Λ,M,P) and κ = −1
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PD as Deformation of AdS4

It is instructive to consider the PD solution as a deformation of the
asymptotic ground state, AdS4:

Metric Deformations
(`,m) Non-Normalizable Normalizable

(0, 0) Temp T Mass M

(1, 0) NUT N x

(2, 0) x Rotation J

(3, 0) Acceleration a x

Gauge Field Deformations

A ∼ Q

r
dt + P cos θdφ

(`,m) Non-Normalizable Normalizable

(0, 0) Constant gauge transformation Electric Charge Q

(1, 0) Magnetic Charge P x
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Black Holes with Scalar Fields

Duff-Liu (1998): superstars in 4d N = 8 gauged sugra. These
are singular half-BPS asympt’ AdS

{M, qΛ|N = 0, qΛ = 0, J = 0, a = 0}

Generalized to non-BPS regular black holes in STU-model
Chong-Cvetic-Lu-Pope (2005). They have the solution with

{M,N, q0 = q1, q2 = q3, J|pΛ = 0, a = 0}

found by “inspired guesswork” modelled on black holes in
ungauged sugra

Rotating case in Chow-Compere (2013) and
Gnecchi,Klemm,Hristov,Toldo,Vaughn (2013)

{M, p0 = p1, p2 = p3, q0 = q1, q2 = q3, J|a = 0}

Static case developed further in Chow-Compere (2013) with

{M, pΛ, qΛ|N = 0, J = 0, a = 0}
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Regular SUSY Black Holes with Scalar Fields
A substantial development was Cacciatori-Klemm (2009) who
considered the STU model of N = 2 gauged supergravity with
the metric ansatz

ds2
4 = −e2Udt2 + e−2Udr2 + e2(V−U)dΣ2

g

eV = r(
r

R
+ v0) , v0 > 0 .

Recall that in the DP solution

gttgθθ = P4(r)

a fourth order polynomial in r . The CK solution has

P4(r) = P2(r)2

The CK solution has four magnetic charges and one
constraint from Dirac quantization

For the one-modulus example F = −X 0X 1 and qΛ = 0,
Colleoni-Klemm (2013) have included NUT charge
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Wrapped Branes

To give perspective to these solutions of Cacciatori-Klemm
one looks to the work of Maldacena-Nunez (2000)

Conformal M2 brane theory has SO(8) (BLG) or
SU(4)× U(1) R-symmetry (ABJM)

We can study this field theory on R× Σg and supersymmetry
is preserved by twisting

The Cartan subgroup of the R-symmetry group is U(1)4 and
we twist by U(1), structure group of Σg

equivalent to twisting four line bundles over Σg , the four
Chern numbers must satisfy

3∑
Λ=0

pΛ = 2− 2g

to preserve the CY5 condition and thus supersymmetry
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M5-branes wrapped on Σg give AdS7 black 3-branes which are
known numerically. The dual SCFT has N = 2 Gaiotto (2009)

or N = 1 Bah-Beem-Bobev-Wecht (2012) in four dimensions

D3-branes wrapped on Σg give AdS5 black strings. The
solutions are known numerically, recently the dual (0, 2) SCFT
was studied and its central charge computed Benini-Bobev

(2013). Constant scalar black string is known analytically
Chamseddine-Sabra (2001)

D4-D8 system wrapped on Σg gives AdS6 black 2-branes,
Nunez et al (2001)

Numerous more complicated AdS black objects are known
with more elaborate embeddings into string/M-theory.

Gauged sugra with hypermultiplets Halmagyi, Petrini, Zaffaroni

(2013) lifts to M2−M5 bound state wrapped
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M-theory lift
In one particular duality frame the STU model has prepotential

F = −2i
√
X 0X 1X 2X 3

and is a consistent truncation of the N=8, de-Wit Nicolai theory
Cvetic et al (1999). This in turn is a consistent truncation of
M-theory on S7

M: tension of M2 branes

N: D6 branes in IIA, squashing of bdy M3 and or orbifolding

pΛ: quantized twists of S7 over Σg

qΛ: rotation along U(1)4 of S7

J: rotation in 4d spacetime

a: squashing of boundary M3

The CK solutions have qΛ = 0, we would like the supersymmetric
solution for general (pΛ, qΛ,N,M)
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Symplectic Covariance

Dall’agata and Gnecchi (2010) present a duality covariant
formulation of static black holes in N = 2 gauged sugra

G =

(
gΛ

gΛ

)
, Q =

(
pΛ

qΛ

)
The formalism transforms covariantly (not invariantly) under
Sp(2nv + 2,R)

Λ ∈ Sp(2nv + 2,R) , G → ΛG , Q → ΛQ

if there is a prepotential it transforms non-linearly

G specifies the theory, Q specifies a selection sector of the
vacuum. Acting with Λ generates a different but equivalent
theory.
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The STU which embeds into M-theory has

G =

(
gΛ

gΛ

)
, gΛ = −


0
g
g
g

 , gΛ =


g
0
0
0


There exists a one parameter deformation of the SO(8) de-Wit
Nicolai theory. On the truncation to the STU-model ω corresponds
to a symplectic rotation of G by Lu-Pang-Pope (2014)

G → Oω · G , O =

(
11 cosω 11 sinω
−11 sinω 11 cosω

)
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Very Special Geometry

We consider theories where Mv is a very special geometry

F = −dijk
X iX jX k

X 0

Mv is a symmetric space

sporadic cases[SU(1, 1)

U(1)

]2
,
[SU(1, 1)

U(1)

]3
,

Sp(6)

U(3)
,

E7

E6 ⊗ U(1)

SU(3, 3)

SU(3)⊗ SU(3)⊗ U(1)
,

SO(12)

SU(6)⊗ U(1)

infinite series

SU(1, 1)

U(1)
⊗ SO(P + 2, 2)

SO(P)⊗ SO(2)

Several more infinite families if one allows for homogeneous
spaces Van Proeyen/de Wit (1992)
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Static Black Holes and Special Geometry
The metric ansatz is

ds2
4 = −e2U(dt + 2N cos θdφ)2 + e−2Udr2 + e2(V−U)dΣ2

g

The BPS Equations are

2eV ∂r

(
Im Ṽ

)
= I ′4(G, Im Ṽ, Im Ṽ) + 2NκGr −Q

∂r

(
eV
)

= 2〈G, Im Ṽ〉
3NκeV + 2〈Q, Im Ṽ〉 = −2eV 〈Im Ṽ, ∂r (Im Ṽ)〉+ 4Nκr〈G, Im Ṽ〉

〈G,Q〉 = −κ (∈ Z Dirac Qu.)

where Ṽ = eV−Ue−iψV
the scalar fields only appear through Im Ṽ
The G → 0 limit reproduces the flat space attractor equations

from Im Ṽ and eV we can obtain eU and Re Ṽ (and thus z i )

e4(V−U) =
3

2
I4(Im Ṽ) , Re Ṽ = 2e2(U−V )I ′4(Im Ṽ)
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Quartic Invariant
The quartic invariant is known from flat space BPS black holes

I4(Q) = −(pΛqΛ)2− 1

16
p0d̂ ijkqiqjqk +4q0dijkp

ipjpk +
9

16
dijk d̂

ilmpjpkqlqm

d̂ ijk =
g img jngkpdmnp

(drsty ry sy t)2

this gives a four index symmetric tensor

tMNRS = ∂M∂N∂R∂S I4(Q) , ∂M =
∂

∂QM

then we define the derivative of this tensor

I ′4(A,B,C )M = ΩMNt
NQRSAQBRCS

and
I4(A,B,C ,D) = tMNQRAMBNCQDR

The AdS4 entropy is given by

R−4
AdS4

= I4(G)
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Horizon Equations N.H. 1308.1439

Metric
ds2

4 = R2
1ds

2
AdS2

+ R2
2dΣ2

g

Define the complexified charges

pΛ = pΛ + iR2
2g

Λ , qΛ = qΛ + iR2
2gΛ

and the quantities

Πj = dijkp
kpk − 1

3
p0qi

the scalar fields are given by

z i =
pi + Ẑ

i

p0

Ẑ
i

=
1

2

d̂ ijk Πj Πk√
d̂ lmnΠl ΠmΠn
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The radii can also be solved for

e iψR
2
2

R1
=

p0

2ieK/2
− 6eK/2dijkẐ

i
y jyk

Finally the radius R2 from which we get the entropy, is found
from the solution to

I4(Q̂) = 0 , Q̂ =

(
pΛ

qΛ

)
which gives

R4
2 =

I4(G,G,Q,Q)±
√

I4(G,G,Q,Q)2 − I4(G)I4(Q)

I4(G)

there is one constraint

0 = I4(Q)I4(Q,G,G,G)2 + I4(G)I4(Q,Q,Q,G)2

−I4(G,Q,Q,Q)I4(G,G,Q,Q)I4(G,G,G,Q)

22 / 29



Comments

The charges are large in Planck units but not in AdS units.

The large entropy comes from the large AdS4 radius

For the STU-model this of course comes from the large
number of M2-branes

We can do better and solve the whole black hole. . .
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Static 1
4-BPS Black Holes with Dyonic Charges

N.H. and Alessandra Gnecchi 1312.2766

N.H. 1408.2831

N.H. and Harold Erbin 1502.XXXX

Pair of real double roots

e2V = r2
( r

RAdS4

+
√
v2

)2
, Im Ṽ =

1

〈G,A1〉
A1 + rA3

The whole solution is given by the UV and IR boundary
conditions
The NUT charge is non-normalizable but still subleading in
the BPS equations
BPS equations vastly overdetermined but nonetheless one can
find analytic solutions

The UV solution is AdS4

A3 =
I ′4(G)

4I4(G)1/4
, RAdS4 = I4(G)−3/4
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The IR solution is given by

A1 = a1I
′
4(G,G,G) + a2I

′
4(G,G,Q) + a3I

′
4(G,Q,Q) + a4I

′
4(Q,Q,Q)

with

a3 = −a3I4(G,Q,Q,Q)

3I4(G,G,G,Q)

a3 =
a3

6

I4(G,G,G,Q)I4(G,Q,Q,Q)2

I4(G,G,G,Q)2I4(Q)− I4(G)I4(G,Q,Q,Q)2

a3 =
9
(
I4(G,Q,Q,Q)I4(G)− I4(G,G,G,Q)I4(Q)

)
I4(G,Q,Q,Q)I4(G,Q,Q,Q)

[
〈I ′4(G,G,G),I ′4(Q,Q,Q)〉+κI4(G,G,Q,Q)

]
a3 = −a2I4(G,G,G,Q)

3I4(G,Q,Q,Q)

Since we enforced that the IR is of the form AdS2 × Σg we have
one constraint from the horizon solution

0 = I4(Q)I4(Q,G,G,G)2 + I4(G)I4(Q,Q,Q,G)2

−I4(G,Q,Q,Q)I4(G,G,Q,Q)I4(G,G,G,Q)
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The metric is given by

v2 =
√

2〈G,A1〉

The NUT charge is fixed by the equations between UV and IR

Nκ = − I4(G,G,G,Q)2I4(G,Q,Q,Q)

144
√

2 I4(G)1/4
×[

18〈G,Q〉I4(G,G,Q,Q)− 〈I ′4(Q,Q,Q), I ′4(G,G,G)〉
]1/2
×[(

I4(G)I4(G,Q,Q,Q)2−I4(G,G,G,Q)2I4(Q)
)2

+16
[
I4(G,G,G,Q)I4(G,Q,Q,Q)

]3]1/2
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Single Double Root

More generally, there are solutions with only a single double
root in e2V

This double root ensures an AdS2 × Σg IR horizon region

The ansatz is then

e2V = r2
( r2

R2
AdS4

+ v3r + v2

)
The sections are

Im Ṽ = e−V
[
A1r + A2r

2 + A3r
3
]

where

A1 = a1I
′
4(G,G,G) + a2I

′
4(G,G,Q) + a3I

′
4(G,Q,Q) + a4I

′
4(Q,Q,Q)

A2 = b1I
′
4(G,G,G) + b2I

′
4(G,G,Q) + b3I

′
4(G,Q,Q) + b4I

′
4(Q,Q,Q)
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Comments

With a single double root the solution for A2 is somewhat
complicated but totally explicit

The NUT charge is then arbitrary, the bi but not the ai ,
depend non-trivially on N

The IR region is still AdS2 × Σg

When the NUT charge satisfies the previous constraint, the
solution will degenerate to a pair of double roots

In principle we could have four complex roots (two conjugate
paris). Indeed, this is the root structure of the constant scalar
solution
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Conclusions and Future Work

Half BPS branch of solutions for static black holes

NUT charge should resolve the singular superstar geometry
while preserving half-BPS

Fully BPS horizon geometries?

Scalar hair, our ansatz has picked out certain solutions

Euclidean continuation of general solution with running
scalars, computation of on-shell action

Partition function for general twists of ABJM

multiple centers for (M,N); multipole moments and/or
separated M2-branes in eleven dimensions?

BPS gauged sugra solutions with (J, a) and running scalars

Generating rotation from 3d reduction in gauged sugra
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