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Setting: Fluid/gravity correspondence
[Bhattacharyya, Hubeny, Minwalla, Rangamani ’07]

Applied to asymptotically flat dilatonic black p-branes sourcing
either:

I a (p+ 1)-form gauge potential or

I a Maxwell gauge potential.

Original motivation

I What is the effect when you add charge to the brane?
Schwarzschild black p-brane [Camps, Emparan, Haddad ’10]

Reissner-Nordström black brane [JG, Pedersen ’13]



Stepping stone to

I Supergravity multi-charged bound state solutions.

I Viscous Lifshitz hydrodynamics (hyperscaling-violating).

Input for the relationship between flat/AdS

I Generalizations of the “AdS/Ricci flat correspondence”.
Neutral branes [Caldarelli, Camps, Gouteraux, Skenderis ’12]

I Effective hydrodynamics of Dp-branes.
Black D3-brane [Emparan, Hubeny, Rangamani ’13]



Highlights

I New examples of fluid transport - input to universal bounds.

I Access to stability properties and GL instability.

I Modified version of the “AdS/Ricci flat correspondence”.



Outline

Setting and motivational points

Charged black branes

Effective fluid description

Perturbative setup

Stability analysis

Flat/AdS relations

Outlook



Action

We consider D dimensional p-brane solutions

I =

∫
D

(
R ∗ 1− 2 dφ ∧ ∗ dφ− 1

2

∑
q∈I

F(q+2) ∧ ∗F(q+2)

)
,

with F(q+2) = eaqφ dC(q+1) and I the collective set of gauge
potentials.

Special cases D/NS/M-branes

I D = 10, type II supergravity with INS = {1} and either
I A with IRR = {0, 2} or
I B with IRR = {1, 3}.

I D = 11, supergravity with IM = {2}.



Charged branes

We consider singly charged p-branes,
[Caldarelli, Emparan, Van Pol ’10]

ds2 = ds2p+2(xa, r) + h(r)dΩ2
n+1 , C(q+1)(x

a, r) , φ(r) ,

with either fundamental charge q = p or Maxwell charge q = 0.

I Solutions are spanned by two parameters r0 and γ0.

I In contrast to AdS (co-dimension 1) branes, we consider
branes of co-dimension n+ 2.

I Dilaton coupling is related to the (intersection) number N

a2q =
4

N
− 2(q + 1)(D − q − 3)

D − 2
.



Outline

Setting and motivational points

Charged black branes

Effective fluid description

Perturbative setup

Stability analysis

Flat/AdS relations

Outlook



Fluid/gravity lore

There is a one-to-one correspondence between the solutions to
Einstein’s equations and the relativistic Navier-Stokes equations,

divT = 0 , d ? j = 0 .

I The effective T and j encompass the asymptotic data of a
(perturbed) solution and the correspondence allows one to
reconstruct the full gravitational solution to any given order in
the derivatives.

Indeed, to leading order the asymptotic stress tensor and current
are

Tab = % uaub + P∆ab , j = QqVolq+1 ,

with fluid velocity ua and projector ∆ab = ηab + uaub.



Remarks

At lowest order (no derivatives) and flat intrinsic geometry ηab,

I The correspondence between fluid dynamics and gravity is a
convenient repackaging of black hole thermodynamics in
terms of a relativistic (perfect) fluid.

I If one abandons the requirement of flat intrinsic geometry
ηab → γab, the statement becomes an equivalence between
gravity and perfect fluid dynamics on a curved p-submanifold.

I This is the blackfold approach and is a non-trivial statement.

[Emparan, Harmark, Niarchos, Obers ’09]
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Ingredients:

I In order to ensure that the perturbative problem is well-posed,
we need to cast the solution into Eddington-Finkelstein.

I Solution behave nicely at the horizon.
I Gravitational perturbations move along null lines, i.e., |dr| = 0.

I Derivative expansion
I The solution is part of a larger class of solutions ds2

f , for which
the parameters ξ = (ua, r0, γ0) are worldvolume fluctuating
functions.

ds2
f = ds2 + ds2

∂ +O(∂2) , etc.



Solving:

I Gauge choice and ansatz for perturbations ψ∂ = (g∂ , A∂ , φ∂)

I Equations
I Constraint equations:

C∂ ∂ξ +O(∂2) = 0 ,

I Dynamical equations:

L(1)
r L(2)

r ψ∂ = s∂(r) +O(∂2) .

I Solving and fixing freedom and boundary conditions
I 1. Horizon regularity.
I 2. Homogenous solution.
I 3. Asymptotically flatness.



First-order corrected solution (q = p):

I Corrected effective stress tensor

Tab = % uaub + P∆ab − 2ησab − ζϑ∆ab +O(∂2) .

I No correction to the charge current j = Q ? 1.

I Transport coefficients

η =
s

4π
,

ζ

η
= 2

(
1

p
+

(C − 2n)γ0

n+ 1 + Cγ0
+

(n+ 1)
(
1 + (C − 2n)γ0

)
(n+ 1 + Cγ0)2

)
,

with C ≡ 2− n(N − 2).

I The neutral limit can be obtained independently by taking
either γ0 or N to zero.



First-order corrected solution (q = 0):

I Shear and bulk viscosity

η =
s

4π
,

ζ

η
=

2

p
+

2

C

(
2−N +

(n+ 1)N

(n+ 1 + Cγ0)2

)
.

I Corrected effective current

ja = Qua − D̃∆ab∂a

(
Φ

T

)
+O(∂2) ,

with diffusion coefficient

D

η
=

4πr0(1 + γ0)

nNγ0
√

(1 + γ0)N
.
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First-order fluid conservation

I Introduce small long-wavelength perturbations in the effective
fluid

T → T + δT ei(ωt+kix
i) , Φ→ Φ + δΦei(ωt+kix

i) etc.

Dispersion relations

I Sound mode(s)
ω(k) = ±csk + iask

2 .

I Shear mode
ω(k) =

iη

w
k2 .



Leading order

I Speed of sound

c2s =

(
∂P

∂%

)
Qp

= −
1 + (2− nN)γ0

n+ 1 + Cγ0
.

I Stability threshold

γ̄0 =
1

nN − 2
.

[Emparan, Harmark, Niarchos, Obers ’11]

I It is a transition point between an unstable branch and a stable
branch of configurations.

I The point of maximal charge.
I The stable regime is where the electrostatic energy is

dominant, i.e., large γ0.



First order

I In the absence of charge diffusion, the attenuation of the
sound mode takes the exact same form as a neutral fluid

as =
1

w

((
1−

1

p

)
η +

ζ

2

)
.

Features

I The charge only plays a role in the equation of state.
I The attenuation coefficient is always positive.

I The stability is therefore fully determined by the linear order,
i.e., by the speed of sound.

I This is in contrast to configurations with smeared charges
where the attenuation coefficient plays an important role for
the stability properties of the effective fluid.



Sound mode coefficients (q = p) for fixed T

0

1

−1
γ0 = 0

γ0 = γ̄0

γ0 →∞

Q

ĉ2
s

âs



Correlated stability conjecture
[Gubser, Mitra ’00, Reall ’01]

I An occurrence of a dynamical GL-like instability is
intercorrelated with a thermodynamical stability.

I The condition for thermodynamic stability is positivity of the
specific heat cQp .

I In fact one finds perfect agreement, since there is a direct
relation between the speed of sound and the specific heat

c2s =

(
∂P

∂%

)
Qp

= s

(
∂T
∂%

)
Qp

=
s

cQp

.



Diffusion

I Additional longitudinal mode

ω(k) = iaDk
2 .

I Attenuation of the diffusion of charge.
I This is a first-order derivative effect.
I Stability to first-order requires both as and aD to be positive.



Leading order

I Speed of sound

c2s =

(
∂P

∂%

)
s
Q

= −
1 + (2−N)γ0

(1 + γ0N)(n+ 1 + Cγ0)
.

I Stability threshold

γ̄0 =
1

N − 2
.

I It is a transition point between an unstable branch and a stable
branch of configurations.

I The point is not where the configuration has maximal charge.

I At leading order the analysis is similar to q = p.



First order

I With charge diffusion, one finds the modification to the
dispersion relation for the sound mode

as =
1

w

((
1−

1

p

)
η +

ζ

2
+

2

T
Q2

c2s

(
Q2

wΦ

c

CQ

)2

D

)
.

Here, CQ is the specific heat capacity and c is the (inverse) isothermal

permittivity.

I For the diffusion mode,

aD =
Q2

c2sw

c

CQ
D .



Sound and diffusion (q = 0) for fixed T

1

0

−1
γ0 = 0

γ0 = γ̄0γ0 →∞
Q

ĉ2
s

âs

âs

âD

âD



Correlated stability conjecture

I The condition for thermodynamic stability is positivity of the
specific heat cQp and isothermal permittivity c,

CQ =

(
∂%

∂T

)
Q

=

(
n+ 1 + Cγ0

(nN − 2)γ0 − 1

)
s ,

c =

(
∂Φ

∂Q

)
T

=

(
1

(γ0 + 1)(1− (nN − 2)γ0)

)
1

sT
.

Observations

I Complementary behaviour - exactly as in dynamical stability
analysis for as and aD.

I Agreement with the correlated stability conjecture.

I However, the exchange threshold is γ0 = 1/(nN−2) (maximal
charge configuration).
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Non-trivial check

I Modification to the “AdS/Ricci flat correspondence”
I Originally a mapping asymptotically locally AdS spacetimes

and Ricci-flat spacetimes. [Caldarelli, Camps, Gouteraux, Skenderis ’12]

I We refer to the two sides of the map as the Flat and the AdS
side.

I We need to introduce a gauge potential.
One minimalistic modification is to perform a Kaluza-Klein
reduction, thus connecting us to EMD theory

L = R −→ L = R− 1

2
(∂φ)2 − 1

4
F2

2 .

I This fixes the coupling constant a = aKK.



Theories, Branes and Hydro

Flat side AdS side

Einstein-Hilbert L = R LΛ = R− 2Λ
[Camps et al. ’10] [Minwalla et al. ’08]

Kaluza-Klein ↓

EMD theory I(R,φ,A1) I(d+1),Λ(R,φ,A1,Λ)
[JG et al. ’15] [Goutéraux et al. ’11]

Ωn+1 ↓ Td−p−1 ↓

(p+ 2)-theory I(R, χ, φ,A1) IΛ(R, χ, φ,A1,Λ)



Inspection

I Say we have closed analytic expressions of solutions to the
reduced action for any positive integer d.

I Extend the domain via an analytic continuation of the
parameter d to any real value.

I It makes sense to consider solutions for negative values of d.
I Apply same reasoning for integer n and inspect that

Vol(Sn+1) IΛ ↔ Vol(Tβ) I ,

under the identification d↔ −n.
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The broader perspective

I 2nd order transport coefficients
I Simply by starting from the known second-order results in AdS.

[Bhattacharyya, Loganayagam, Mandal, Minwalla, Sharma ’08]

I Smeared D0-brane solutions are related to charged Dp-branes
by T-duality.

I This requires considering the Buscher rules in a derivative
expansion.

I(R, φ,F2) −→ I(R, φ,Fp+2) .

I Two approaches to transport coefficients.

I Hydrodynamic limit for branes with general smeared charge
(q < p) and multi-charged bound state solutions.

I Requires a extended fluid formalism.



Lifshitz hydrodynamics

I It is possible to generalize the mapping between actions.
However, if one wants to uplift to higher dimensions this leads
to pathological theories.

I At the reduced level one has explicit access to the first-order
corrected solutions with (hyperscaling-violating) Lifshitz
symmetry.


