Hairy black holes in scalar tensor theories

E Babichev and CC gr-qc/1312.3204 CC, T Kolyvaris, E Papantonopoulos and M Tsoukalas gr-qc/1404.1024 C. Charmousis and D Damianos gr-qc/1501.05167 E Babichev CC and M Hassaine in preparation

> LPT Orsay, CNRS

Aspects of fluid/gravity correspondence-Thessaloniki

- 1 Introduction: basic facts about scalar-tensor theories
- Scalar-tensor black holes and the no hair paradigm

 Conformal secondary hair?
- Building higher order scalar-tensor black holesExample solutions
- 4 Hairy black hole
- Adding a U(1) gauge field-EM
- 6 Conclusions

Scalar-tensor theories

- are the simplest modification of gravity with one additional degree of freedom
- Admit a uniqueness theorem due to Horndeski 1973
- contain or are limits of other modified gravity theories. f(R), massive gravity etc.
- (Can) have insightful screening mechanisms (Chameleon, Vainshtein)
- Include terms that can screen classically a big cosmological constant (Fab 4 [CC, Copeland, Padilla and Saffin 2012])

Jordan-Brans-Dicke theory [Sotiriou 2014]

Simplest scalar tensor theory

$$S_{\mathrm{BD}} = rac{1}{16\pi G} \int d^4 x \sqrt{-g} \left(arphi R - rac{\omega_0}{arphi}
abla^\mu arphi
abla_\mu arphi - m^2 (arphi - arphi_0)^2
ight) + S_m (g_{\mu
u}, \psi)$$

- ullet ω_0 Brans Dicke coupling parameter fixing scalar strength
- $\phi = \phi_0$ constant gives GR solutions (with a cosmological constant) but spherically symmetric solutions are not unique!
- For spherical symmetry we find,

$$\gamma \equiv \frac{h_{ij}|_{i=j}}{h_{00}} = \frac{2\omega_0 + 3 - \exp\left[-\sqrt{\frac{2\varphi_0}{2\omega_0 + 3}}mr\right]}{2\omega_0 + 3 + \exp\left[-\sqrt{\frac{2\varphi_0}{2\omega_0 + 3}}mr\right]}$$

- where $\gamma = 1 + (2.1 \pm 2.3) \times 10^{-5}$
- $\omega_0 > 40000$

 $L_2 = K(\phi, X)$

What is the most general scalar-tensor theory

with second order field equations [Horndeski 1973], [Deffayet et.al.]?

Horndeski has shown that the most general action with this property is

$$S_H = \int d^4x \sqrt{-g} (L_2 + L_3 + L_4 + L_5)$$

$$L_3 = -G_3(\phi, X) \square \phi,$$

$$L_4 = G_4(\phi, X)R + G_{4X} \left[(\square \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right],$$

$$L_5 = \textit{G}_5(\phi, \textit{X})\textit{G}_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\phi - \frac{\textit{G}_{5\textit{X}}}{6}\left[\left(\Box\phi\right)^3 - 3\Box\phi(\nabla_{\mu}\nabla_{\nu}\phi)^2 + 2(\nabla_{\mu}\nabla_{\nu}\phi)^3\right]$$

the G_i are unspecified functions of ϕ and $X \equiv -\frac{1}{2} \nabla^{\mu} \phi \nabla_{\mu} \phi$ and $G_{iX} \equiv \partial G_i / \partial X$.

- In fact same action as covariant Galileons [Deffayet, Esposito-Farese, Vikman]
- Theory screens generically scalar mode locally by the Vainshtein mechanism.

- \bullet R, f(R) theories, Brans Dicke theory with arbitrary potential
- Scalar-tensor interaction terms: $G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$, $P^{\mu\rho\nu\sigma}\nabla_{\mu}\nabla_{\nu}\phi\nabla_{\rho}\phi\nabla_{\sigma}\phi$, $V(\phi)\hat{G}$
- higher order Galileons : $\Box \phi(\nabla \phi)^2, (\nabla \phi)^4$
- Higher order terms originate form KK reduction of Lovelock theory ([van Acoleyen et.al. arXiv:1102.0487 [gr-qc]], [CC, Goutéraux and Kiritsis])
- Gallileons in flat spacetime have Gallilean symmetry [Nicolia et.al.: arXiv:0811.2197 [hep-th]]
- Horndeski theories appear at "decoupling limit" of DGP and massive gravity theories

- ullet R, f(R) theories, Brans Dicke theory with arbitrary potential
- Scalar-tensor interaction terms: $G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$, $P^{\mu\rho\nu\sigma}\nabla_{\mu}\nabla_{\nu}\phi\nabla_{\rho}\phi\nabla_{\sigma}\phi$, $V(\phi)\hat{G}$
- higher order Galileons : $\Box \phi(\nabla \phi)^2, (\nabla \phi)^4$
- Higher order terms originate form KK reduction of Lovelock theory ([van Acoleyen et.al. arXiv:1102.0487 [gr-qc]], [CC, Goutéraux and Kiritsis])
- Gallileons in flat spacetime have Gallilean symmetry [Nicolis et.al.: arXiv:0811.2197 [hep-th]]
- Horndeski theories appear at "decoupling limit" of DGP and massive gravity theories

- ullet R, f(R) theories, Brans Dicke theory with arbitrary potential
- Scalar-tensor interaction terms: $G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$, $P^{\mu\rho\nu\sigma}\nabla_{\mu}\nabla_{\nu}\phi\nabla_{\rho}\phi\nabla_{\sigma}\phi$, $V(\phi)\hat{G}$
- higher order Galileons : $\Box \phi (\nabla \phi)^2, (\nabla \phi)^4$
- Higher order terms originate form KK reduction of Lovelock theory ([van Acoleyen et.al. arXiv:1102.0487 [gr-qc]], [CC, Goutéraux and Kiritsis])
- Gallileons in flat spacetime have Gallilean symmetry [Nicolis et.al.: arXiv:0811.2197 [hep-th]]
- Horndeski theories appear at "decoupling limit" of DGP and massive gravity theories

What about black holes in scalar-tensor theories

- \bullet R, f(R) theories, Brans Dicke theory with arbitrary potential
- Scalar-tensor interaction terms: $G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$, $P^{\mu\rho\nu\sigma}\nabla_{\mu}\nabla_{\nu}\phi\nabla_{\rho}\phi\nabla_{\sigma}\phi$, $V(\phi)\hat{G}$
- higher order Galileons : $\Box \phi (\nabla \phi)^2, (\nabla \phi)^4$
- Higher order terms originate form KK reduction of Lovelock theory ([van Acoleyen et.al. arXiv:1102.0487 [gr-qc]], [CC, Goutéraux and Kiritsis])
- Gallileons in flat spacetime have Gallilean symmetry [Nicolis et.al.: arXiv:0811.2197 [hep-th]]
- Horndeski theories appear at "decoupling limit" of DGP and massive gravity theories

What about black holes in scalar-tensor theories?

- \bullet R, f(R) theories, Brans Dicke theory with arbitrary potential
- Scalar-tensor interaction terms: $G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$, $P^{\mu\rho\nu\sigma}\nabla_{\mu}\nabla_{\nu}\phi\nabla_{\rho}\phi\nabla_{\sigma}\phi$, $V(\phi)\hat{G}$
- higher order Galileons : $\Box \phi (\nabla \phi)^2, (\nabla \phi)^4$
- Higher order terms originate form KK reduction of Lovelock theory ([van Acoleyen et.al. arXiv:1102.0487 [gr-qc]], [CC, Goutéraux and Kiritsis])
- Gallileons in flat spacetime have Gallilean symmetry [Nicolis et.al.: arXiv:0811.2197 [hep-th]]
- Horndeski theories appear at "decoupling limit" of DGP and massive gravity theories

What about black holes in scalar-tensor theories?

- ullet R, f(R) theories, Brans Dicke theory with arbitrary potential
- Scalar-tensor interaction terms: $G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$, $P^{\mu\rho\nu\sigma}\nabla_{\mu}\nabla_{\nu}\phi\nabla_{\rho}\phi\nabla_{\sigma}\phi$, $V(\phi)\hat{G}$
- higher order Galileons : $\Box \phi(\nabla \phi)^2, (\nabla \phi)^4$
- Higher order terms originate form KK reduction of Lovelock theory ([van Acoleyen et.al. arXiv:1102.0487 [gr-qc]], [CC, Goutéraux and Kiritsis])
- Gallileons in flat spacetime have Gallilean symmetry [Nicolis et.al.: arXiv:0811.2197 [hep-th]]
- Horndeski theories appear at "decoupling limit" of DGP and massive gravity theories

What about black holes in scalar-tensor theories?

- 1 Introduction: basic facts about scalar-tensor theories
- Scalar-tensor black holes and the no hair paradigmConformal secondary hair?
- Building higher order scalar-tensor black holesExample solutions
- 4 Hairy black hole
- Adding a U(1) gauge field-EM
- 6 Conclusions

Conformal secondary hair?

Black holes have no hair

During gravitational collapse...

Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges and no details

Conclusions

Conformal secondary hair?

Black holes have no hair

During gravitational collapse...
Black holes eat or expel surrounding matter

their stationary phase is characterized by a limited number of charges and no details

Conclusions

black holes are bald.

Black holes have no hair

During gravitational collapse...

Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges

and no details

black holes are bald.

No hair arguments/theorems dictate under some reasonable hypotheses that adding degrees of freedom lead to singular solutions... For example in vanilla scalar-tensor theories black hole solutions are GR black holes with constant scalar.

Conformal secondary hair?

Black holes have no hair

During gravitational collapse...

Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges and no details

black holes are bald..

No hair arguments/theorems dictate under some reasonable hypotheses that adding degrees of freedom lead to singular solutions...

For example in vanilla scalar-tensor theories black hole solutions are GR black holes with constant scalar.

Conformal secondary hair?

Black holes have no hair

During gravitational collapse...

Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges and no details

Conclusions

black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding degrees of freedom lead to singular solutions...

For example in vanilla scalar-tensor theories black hole solutions are GR black holes with constant scalar

Black holes have no hair

During gravitational collapse...

Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges and no details

Conclusions

black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding degrees of freedom lead to singular solutions...

For example in vanilla scalar-tensor theories black hole solutions are GR black holes with constant scalar.

Conformal secondary hair?

Black holes have no hair

During gravitational collapse...

Black holes eat or expel surrounding matter their stationary phase is characterized by a limited number of charges and no details

Conclusions

black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding degrees of freedom lead to singular solutions...

For example in vanilla scalar-tensor theories black hole solutions are GR black holes with constant scalar.

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) d^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\left\{egin{aligned} g_{lphaeta}&\mapsto ilde{g}_{lphaeta} = \Omega^2 g_{lphaeta}\ \phi&\mapsto ilde{\phi} = \Omega^{-1}\phi \end{aligned}
ight.$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.

The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74]

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) d^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\begin{cases} g_{\alpha\beta} \mapsto \tilde{g}_{\alpha\beta} = \Omega^2 g_{\alpha\beta} \\ \phi \mapsto \tilde{\phi} = \Omega^{-1} \phi \end{cases}$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) d^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\left\{egin{aligned} g_{lphaeta} &\mapsto ilde{g}_{lphaeta} = \Omega^2 g_{lphaeta} \ \phi &\mapsto ilde{\phi} = \Omega^{-1} \phi \end{aligned}
ight.$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.

The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74]

The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74]

Static and spherically symmetric solution

$$\mathrm{d}s^2 = -\left(1 - \frac{m}{r}\right)^2 \mathrm{d}t^2 + \frac{\mathrm{d}r^2}{\left(1 - \frac{m}{r}\right)^2} + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\varphi^2\right)$$

with secondary scalar hair

$$\phi = \sqrt{\frac{3}{4\pi G}} \frac{m}{r - m}$$

- Geometry is that of an extremal RN. Problem: The scalar field is **unbounded** at (r = m).
- Controversy on the stability [Bronnikov et al.-78, McFadden et al.-05] Not clear that the solution is a black hole.

The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74]

Static and spherically symmetric solution

$$\mathrm{d}s^2 = -\left(1 - \frac{m}{r}\right)^2 \mathrm{d}t^2 + \frac{\mathrm{d}r^2}{\left(1 - \frac{m}{r}\right)^2} + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\varphi^2\right)$$

with secondary scalar hair

$$\phi = \sqrt{\frac{3}{4\pi G}} \frac{m}{r - m}$$

- Geometry is that of an extremal RN. Problem: The scalar field is **unbounded** at (r = m).
- Controversy on the stability [Bronnikov et al.-78, McFadden et al.-05] Not clear that the solution is a black hole.

The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74]

• Static and spherically symmetric solution

$$ds^{2} = -\left(1 - \frac{m}{r}\right)^{2}dt^{2} + \frac{dr^{2}}{\left(1 - \frac{m}{r}\right)^{2}} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

with secondary scalar hair

$$\phi = \sqrt{\frac{3}{4\pi G}} \frac{m}{r - m}$$

- Geometry is that of an extremal RN. Problem: The scalar field is **unbounded** at (r = m).
- Controversy on the stability [Bronnikov et al.-78, McFadden et al.-05]
 Not clear that the solution is a black hole.

Scalar-tensor theories and black holes

- In scalar tensor theories "regular" black hole solutions are GR black holes with a constant scalar field
- Is it possible to have non-trivial and regular scalar-tensor black holes for an asymptotically flat or $\Lambda>0$ space-time?
- How can we evade no-hair theorems?

Scalar-tensor theories and black holes

- In scalar tensor theories "regular" black hole solutions are GR black holes with a constant scalar field
- Is it possible to have non-trivial and regular scalar-tensor black holes for an asymptotically flat or $\Lambda > 0$ space-time?
- How can we evade no-hair theorems?

Scalar-tensor theories and black holes

- In scalar tensor theories "regular" black hole solutions are GR black holes with a constant scalar field
- Is it possible to have non-trivial and regular scalar-tensor black holes for an asymptotically flat or $\Lambda > 0$ space-time?
- How can we evade no-hair theorems?

- Introduction: basic facts about scalar-tensor theories
- Scalar-tensor black holes and the no hair paradigm

 Conformal secondary hair?
- Building higher order scalar-tensor black holesExample solutions
- 4 Hairy black hole
- 5 Adding a U(1) gauge field-EM
- 6 Conclusions

Consider $L = L(g_{\mu\nu}, \nabla \phi, \nabla \nabla \phi, \psi, F_{\mu\nu}) \subset L_H$,

- theory has shift symmetry in $\phi \rightarrow \phi + c$
- $\mathcal{E}_{(\phi)} = \nabla_{\mu} J^{\mu} = 0$, J^{μ} is a conserved current associated to the symmetry
- Suppose now a static and spherically symmetric spacetime, $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$

Conclusions

• and $\phi = qt + \psi(r)$. Galileon does not acquire the symmetries of spacetime. Are the EoM compatible?

Under these hypotheses

 $-qJ_r=\mathcal{E}_{tr}g^{rr}$ where \mathcal{E}_{tr} is the tr-metric equation

Consider
$$L = L(g_{\mu\nu}, \nabla \phi, \nabla \nabla \phi, \psi, F_{\mu\nu}) \subset L_H$$
,

- ullet theory has shift symmetry in $\phi
 ightarrow \phi + c$
- $\mathcal{E}_{(\phi)} = \nabla_{\mu} J^{\mu} = 0$, J^{μ} is a conserved current associated to the symmetry
- Suppose now a static and spherically symmetric spacetime, $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$

Conclusions

• and $\phi = qt + \psi(r)$. Galileon does not acquire the symmetries of spacetime. Are the EoM compatible?

Under these hypotheses:

 $-qJ_r=\mathcal{E}_{tr}g^{rr}$ where \mathcal{E}_{tr} is the tr-metric equation

Consider $L = L(g_{\mu\nu}, \nabla \phi, \nabla \nabla \phi, \psi, F_{\mu\nu}) \subset L_H$,

- theory has shift symmetry in $\phi \rightarrow \phi + c$
- ullet $\mathcal{E}_{(\phi)}=
 abla_{\mu}J^{\mu}=0$, J^{μ} is a conserved current associated to the symmetry
- Suppose now a static and spherically symmetric spacetime, $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$

Conclusions

and φ = qt + ψ(r).
 Galileon does not acquire the symmetries of spacetime. Are the EoM compatible?

Under these hypotheses:

 $-qJ_r = \mathcal{E}_{tr}g^{rr}$ where \mathcal{E}_{tr} is the tr-metric equation

Consider $L = L(g_{\mu\nu}, \nabla \phi, \nabla \nabla \phi, \psi, F_{\mu\nu}) \subset L_H$,

- theory has shift symmetry in $\phi \rightarrow \phi + c$
- $\mathcal{E}_{(\phi)} = \nabla_{\mu} J^{\mu} = 0$, J^{μ} is a conserved current associated to the symmetry
- Suppose now a static and spherically symmetric spacetime, $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$

Conclusions

and φ = qt + ψ(r).
 Galileon does not acquire the symmetries of spacetime. Are the EoM compatible?

Under these hypotheses:

 $-qJ_r = \mathcal{E}_{tr}g^{rr}$ where \mathcal{E}_{tr} is the tr-metric equation

No time derivatives present in the field equations

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

Conclusions

Metric field equations read,

$$\begin{split} \zeta G_{\mu\nu} - \eta \left(\partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} g_{\mu\nu} (\partial \phi)^{2} \right) + g_{\mu\nu} \Lambda \\ + \frac{\beta}{2} \left((\partial \phi)^{2} G_{\mu\nu} + 2 P_{\mu\alpha\nu\beta} \nabla^{\alpha} \phi \nabla^{\beta} \phi \right. \\ + g_{\mu\alpha} \delta_{\nu\gamma\delta}^{\alpha\rho\sigma} \nabla^{\gamma} \nabla_{\rho} \phi \nabla^{\delta} \nabla_{\sigma} \phi \right) = 0, \end{split}$$

- Scalar field has translational invariance $: \phi \to \phi + \text{const.}$,
- Scalar field equation,

$$abla_{\mu}J^{\mu}=0,\ \ J^{\mu}=\left(\eta g^{\mu
u}-eta G^{\mu
u}
ight)\partial_{
u}\phi$$

• Take $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$, $\phi = \phi(r) + qt$ then,

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

Conclusions

Metric field equations read,

$$\begin{split} \zeta \textit{G}_{\mu\nu} - \eta \left(\partial_{\mu}\phi \partial_{\nu}\phi - \frac{1}{2}\textit{g}_{\mu\nu}(\partial\phi)^{2} \right) + \textit{g}_{\mu\nu}\Lambda \\ + \frac{\beta}{2} \left((\partial\phi)^{2}\textit{G}_{\mu\nu} + 2\textit{P}_{\mu\alpha\nu\beta}\nabla^{\alpha}\phi\nabla^{\beta}\phi \right. \\ + \textit{g}_{\mu\alpha}\delta^{\alpha\rho\sigma}_{\nu\gamma\delta}\nabla^{\gamma}\nabla_{\rho}\phi\nabla^{\delta}\nabla_{\sigma}\phi \right) = 0, \end{split}$$

- Scalar field has translational invariance $: \phi \to \phi + \text{const.}$,
- Scalar field equation,

$$\nabla_{\mu}J^{\mu}=0, \ J^{\mu}=\left(\eta g^{\mu\nu}-\beta G^{\mu\nu}\right)\partial_{\nu}\phi.$$

• Take $ds^2=-h(r)dt^2+\frac{dr^2}{f(r)}+r^2d\Omega^2$, $\phi=\phi(r)+qt$ then,

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

• Scalar field has translational invariance $: \phi \to \phi + \text{const.}$,

Conclusions

Scalar field equation,

$$\nabla_{\mu}J^{\mu}=0, \ J^{\mu}=(\eta g^{\mu\nu}-\beta G^{\mu\nu})\,\partial_{\nu}\phi.$$

- Take $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$, $\phi = \phi(r) + qt$ then, $(\eta g^{rr} \beta G^{rr})\sqrt{g}\phi' = c$
- but current is singular $J^2 = J^{\mu}J^{\nu}g_{\mu\nu} = (J^r)^2g_{rr}$ unless $J^r = 0$ at the horizon...
 - Generically $\phi = constant$ everywhere [Hui and Nicolis] and we have again the appearance of a no-hair theorem...
- But for a higher order theory $J^r = 0$ does not neccesarily imply $\phi = c$

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

• Scalar field has translational invariance $: \phi \to \phi + \text{const.}$,

Conclusions

Scalar field equation,

$$\nabla_{\mu}J^{\mu}=0, \ J^{\mu}=(\eta g^{\mu\nu}-\beta G^{\mu\nu})\,\partial_{\nu}\phi.$$

- Take $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$, $\phi = \phi(r) + qt$ then, $(\eta g^{rr} \beta G^{rr})\sqrt{g}\phi' = c$
- but current is singular $J^2=J^\mu J^\nu g_{\mu\nu}=(J^r)^2 g_{rr}$ unless $J^r=0$ at the horizon...
 - Generically $\phi=constant$ everywhere [Hui and Nicolis] and we have again the appearance of a no-hair theorem...
- But for a higher order theory $J^r=0$ does not neccessarily imply $\phi=const$

Example theory

Consider the action,

$$S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right],$$

• Scalar field has translational invariance $: \phi \to \phi + \text{const.}$,

Conclusions

Scalar field equation,

$$\nabla_{\mu}J^{\mu}=0, \ J^{\mu}=\left(\eta g^{\mu\nu}-\beta G^{\mu\nu}\right)\partial_{\nu}\phi.$$

- Take $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$, $\phi = \phi(r) + qt$ then, $(\eta g^{rr} \beta G^{rr})\sqrt{g}\phi' = c$
- but current is singular $J^2=J^\mu J^\nu g_{\mu\nu}=(J^r)^2 g_{rr}$ unless $J^r=0$ at the horizon...
 - Generically $\phi=constant$ everywhere [Hui and Nicolis] and we have again the appearance of a no-hair theorem...
- But for a higher order theory $J^r=0$ does not neccessarily imply $\phi=const.$

- Hypotheses: $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$
- $\beta G^{rr} \eta g^{rr} = 0$ and $\phi(t, r) = q t + \psi(r)$,
- Geometric constraint, $f = \frac{(\beta + \eta r^2)h}{\beta(rh)^2}$, fixing spherically symmetric gauge.
- no scalar charge, current ok, $\phi \neq 0$, and (tr)-eq satisfied

- Unknowns $\psi(r)$ and h(r) and have two ODE's to solve, the (rr) and (tt) Hence hypotheses are consistent.
- The system is integrable for spherical symmetry boiling down to a single second order non-linear ODE for an arbitrary Shift symmetric theory!

- Hypotheses: $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$
- $\beta G^{rr} \eta g^{rr} = 0$ and $\phi(t, r) = q t + \psi(r)$,
- Geometric constraint, $f = \frac{(\beta + \eta r^2)h}{\beta(rh)'}$, fixing spherically symmetric gauge.
- no scalar charge, current ok, $\phi \neq 0$, and (tr)-eq satisfied

- Unknowns $\psi(r)$ and h(r) and have two ODE's to solve, the (rr) and (tt). Hence hypotheses are consistent.
- The system is integrable for spherical symmetry boiling down to a single second order non-linear ODE for an arbitrary Shift symmetric theory!

- Hypotheses: $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$
- $\beta G^{rr} \eta g^{rr} = 0$ and $\phi(t, r) = q t + \psi(r)$,
- Geometric constraint, $f = \frac{(\beta + \eta r^2)h}{\beta(rh)'}$, fixing spherically symmetric gauge.
- no scalar charge, current ok, $\phi \neq 0$, and (tr)-eq satisfied

- Unknowns $\psi(r)$ and h(r) and have two ODE's to solve, the (rr) and (tt). Hence hypotheses are consistent.
- The system is integrable for spherical symmetry boiling down to a single second order non-linear ODE for an arbitrary Shift symmetric theory!

- Hypotheses: $ds^2 = -h(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$
- $\beta G^{rr} \eta g^{rr} = 0$ and $\phi(t, r) = q t + \psi(r)$,
- Geometric constraint, $f = \frac{(\beta + \eta r^2)h}{\beta(rh)'}$, fixing spherically symmetric gauge.
- no scalar charge, current ok, $\phi \neq 0$, and (tr)-eq satisfied

- Unknowns $\psi(r)$ and h(r) and have two ODE's to solve, the (rr) and (tt). Hence hypotheses are consistent.
- The system is integrable for spherical symmetry boiling down to a single second order non-linear ODE for an arbitrary Shift symmetric theory!

Solving the remaining EoM

ullet From (rr)-component get ψ'

$$\psi' = \pm \frac{\sqrt{r}}{h(\beta + \eta r^2)} \left(\mathbf{q}^2 \beta (\beta + \eta r^2) h' - \frac{\zeta \eta + \beta \Lambda}{2} (h^2 r^2)' \right)^{1/2}.$$

Conclusions

• and finally (tt)-component gives h(r) via,

$$h(r) = -\frac{\mu}{r} + \frac{1}{r} \int \frac{k(r)}{\beta + \eta r^2} dr,$$

with

$$q^{2}\beta(\beta + \eta r^{2})^{2} - (2\zeta\beta + (2\zeta\eta - \lambda)r^{2})k + C_{0}k^{3/2} = 0,$$

Any solution to the algebraic eq for k=k(r) gives full solution to the system

Solving the remaining EoM

• From (rr)-component get ψ'

$$\psi' = \pm \frac{\sqrt{r}}{h(\beta + \eta r^2)} \left(\mathbf{q}^2 \beta (\beta + \eta r^2) h' - \frac{\zeta \eta + \beta \Lambda}{2} (h^2 r^2)' \right)^{1/2}.$$

Conclusions

• and finally (tt)-component gives h(r) via,

$$h(r) = -\frac{\mu}{r} + \frac{1}{r} \int \frac{k(r)}{\beta + \eta r^2} dr,$$

with

$$q^{2}\beta(\beta + \eta r^{2})^{2} - (2\zeta\beta + (2\zeta\eta - \lambda) r^{2}) k + C_{0}k^{3/2} = 0,$$

Any solution to the algebraic eq for k = k(r) gives full solution to the system!

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right)' = 0$

- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{rr}=0
 ightarrow f=rac{h}{(rh)'}$ and $\phi(t,r)=q\,t+\psi(r)$
- (rr)-EOM gives $\phi_{\pm}=qt\pm q\mu\left[2\sqrt{\frac{r}{\mu}}+\log\frac{\sqrt{r}-\sqrt{\mu}}{\sqrt{r}+\sqrt{\mu}}\right]+\phi_{0}$
- (tt)-EOM $g^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \rightarrow k = constant!$
- $f(r) = h(r) = 1 \mu/r$

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right)' = 0$

- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{rr} = 0 \rightarrow f = \frac{h}{(rh)^r}$ and $\phi(t,r) = q \, t + \psi(r)$
- ullet (rr)-EOM gives $\phi_\pm=qt\pm q\mu\left[2\sqrt{rac{r}{\mu}}+\lograc{\sqrt{r}-\sqrt{\mu}}{\sqrt{r}+\sqrt{\mu}}
 ight]+\phi_0$
- (tt)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \rightarrow k = constant$
- $f(r) = h(r) = 1 \mu/r$

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right)' = 0$

Conclusions

- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{rr}=0 \rightarrow f=\frac{h}{(rh)^r}$ and $\phi(t,r)=q\,t+\psi(r)$
- (rr)-EOM gives $\phi_\pm=qt\pm q\mu\left[2\sqrt{\frac{r}{\mu}}+\log\frac{\sqrt{r}-\sqrt{\mu}}{\sqrt{r}+\sqrt{\mu}}\right]+\phi_0$
- (tt)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \to k = constant!$
- $f(r) = h(r) = 1 \mu/r$

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right)' = 0$

Conclusions

- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{\prime\prime}=0
 ightarrow f=rac{h}{(rh)^{\prime}}$ and $\phi(t,r)=q\,t+\psi(r)$
- (rr)-EOM gives $\phi_\pm=qt\pm q\mu\left[2\sqrt{r\over\mu}+\log{\sqrt{r}-\sqrt\mu\over\sqrt{r}+\sqrt\mu}
 ight]+\phi_0$
- (tt)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \to k = constant!$
- $f(r) = h(r) = 1 \mu/r$

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right)' = 0$

Conclusions

- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{\prime\prime}=0
 ightarrow f=rac{h}{(rh)^{\prime}}$ and $\phi(t,r)=q\,t+\psi(r)$
- (rr)-EOM gives $\phi_\pm=qt\pm q\mu\left[2\sqrt{r\over\mu}+\log{\sqrt{r}-\sqrt\mu\over\sqrt{r}+\sqrt\mu}
 ight]+\phi_0$
- (tt)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \to k = constant!$
- $f(r) = h(r) = 1 \mu/r$

- Consider $S = \int d^4x \sqrt{-g} \left[\zeta R + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$
- $G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi = \nabla_{\mu}\left(G^{\mu\nu}\nabla_{\nu}\phi\right) = \frac{1}{\sqrt{g}}\left(G^{\mu\nu}\sqrt{g}\partial_{\nu}\phi\right)' = 0$

Conclusions

- in Eq of scalar $\beta G^{\mu\nu} \rightarrow$ Einstein equation
- $G^{\prime\prime}=0
 ightarrow f=rac{h}{(rh)^{\prime}}$ and $\phi(t,r)=q\,t+\psi(r)$
- (rr)-EOM gives $\phi_\pm=qt\pm q\mu\left[2\sqrt{\frac{r}{\mu}}+\log\frac{\sqrt{r}-\sqrt{\mu}}{\sqrt{r}+\sqrt{\mu}}
 ight]+\phi_0$
- (tt)-EOM $q^2\beta^3 2\zeta\beta k + C_0k^{3/2} = 0 \to k = constant!$
- $f(r) = h(r) = 1 \mu/r$

- Scalar looks singular for $r \to r_h$ but $t_h \to \infty$!
- Consider $v=t+\int (fh)^{-1/2}dr$ then $ds^2=-hdv^2+2\sqrt{h/f}\ dvdr+r^2d\Omega^2$ Regular chart for horizon, EF coordinates ([Jacobson], [Ayon-Beato, Martinez & Zanelli])

•
$$\phi_+ = q \left[v - r + 2\sqrt{\mu r} - 2\mu \log \left(\sqrt{\frac{r}{\mu}} + 1 \right) \right] + \text{const}$$

- Scalar regular at future black hole horizon
- Metric is Schwarzschild, scalar is regular and non-trivial
- Scalar linearly diverges at past and future null infinity but not its derivatives, current is constant.

- Scalar looks singular for $r \to r_h$ but $t_h \to \infty$!
- Consider $v=t+\int (fh)^{-1/2}dr$ then $ds^2=-hdv^2+2\sqrt{h/f}\ dvdr+r^2d\Omega^2$ Regular chart for horizon, EF coordinates ([Jacobson], [Ayon-Beato, Martinez & Zanelli])

•
$$\phi_+ = q \left[v - r + 2\sqrt{\mu r} - 2\mu \log \left(\sqrt{\frac{r}{\mu}} + 1 \right) \right] + \text{const}$$

- Scalar regular at future black hole horizon
- Metric is Schwarzschild, scalar is regular and non-trivial
- Scalar linearly diverges at past and future null infinity but not its derivatives, current is constant.

- Scalar looks singular for $r \to r_h$ but $t_h \to \infty$!
- Consider $v=t+\int (fh)^{-1/2}dr$ then $ds^2=-hdv^2+2\sqrt{h/f}\ dvdr+r^2d\Omega^2$ Regular chart for horizon, EF coordinates ([Jacobson], [Ayon-Beato, Martinez & Zanelli])
- $ullet \phi_+ = q \left[v r + 2 \sqrt{\mu r} 2 \mu \log \left(\sqrt{rac{r}{\mu}} + 1
 ight)
 ight] + {
 m const}$

- Scalar regular at future black hole horizon!
- Metric is Schwarzschild, scalar is regular and non-trivia
- Scalar linearly diverges at past and future null infinity but not its derivatives, current is constant.

•
$$\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} - \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$$

- Scalar looks singular for $r \to r_h$ but $t_h \to \infty$!
- Consider $v=t+\int (fh)^{-1/2}dr$ then $ds^2=-hdv^2+2\sqrt{h/f}\ dvdr+r^2d\Omega^2$ Regular chart for horizon, EF coordinates ([Jacobson], [Ayon-Beato, Martinez & Zanelli])
- $ullet \phi_+ = q \left[v r + 2\sqrt{\mu r} 2\mu \log \left(\sqrt{rac{r}{\mu}} + 1
 ight) \right] + {
 m const}$

- Scalar regular at future black hole horizon!
- Metric is Schwarzschild, scalar is regular and non-trivial
- Scalar linearly diverges at past and future null infinity but not its derivatives, current is constant.

All solutions are not "GR like" (but need $\eta \neq 0$ or $\Lambda \neq 0$)

Conclusions

Need to solve:

$$q^{2}\beta(\beta + \eta r^{2})^{2} - (2\zeta\beta + (2\zeta\eta - \lambda)r^{2})k + C_{0}k^{3/2} = 0$$

with

$$h(r) = -\frac{\mu}{r} + \frac{1}{r} \int \frac{k(r)}{\beta + \eta r^2} dr$$

- Example: Black hole in an Einstein static universe $(\zeta \eta + \beta \Lambda = 0)$
- $h = 1 \frac{\mu}{r}$, $f = \left(1 \frac{\mu}{r}\right)\left(1 + \frac{\eta r^2}{\beta}\right)$,
- $\psi' = \pm rac{q}{h} \sqrt{rac{\mu}{r(1+rac{\eta}{eta} \, r^2)}}$ and $\phi = qt + \psi(r)$
- Solution is not asymptotically flat or de Sitter.

Can we get de Sitter asymptotics?

All solutions are not "GR like" (but need $\eta \neq 0$ or $\Lambda \neq 0$)

Conclusions

Need to solve:

$$q^{2}\beta(\beta + \eta r^{2})^{2} - (2\zeta\beta + (2\zeta\eta - \lambda)r^{2})k + C_{0}k^{3/2} = 0$$

with

$$h(r) = -\frac{\mu}{r} + \frac{1}{r} \int \frac{k(r)}{\beta + \eta r^2} dr$$

- Example: Black hole in an Einstein static universe $(\zeta \eta + \beta \Lambda = 0)$
- $h = 1 \frac{\mu}{r}, f = \left(1 \frac{\mu}{r}\right) \left(1 + \frac{\eta r^2}{\beta}\right),$
- $\quad \bullet \ \ \psi' = \pm \tfrac{q}{h} \sqrt{\tfrac{\mu}{r(1+\tfrac{\eta}{\beta}r^2)}} \ \text{and} \ \phi = qt + \psi(r).$
- Solution is not asymptotically flat or de Sitter.

Can we get de Sitter asymptotics?

All solutions are not "GR like" (but need $\eta \neq 0$ or $\Lambda \neq 0$)

Conclusions

Need to solve:

$$q^{2}\beta(\beta + \eta r^{2})^{2} - (2\zeta\beta + (2\zeta\eta - \lambda)r^{2})k + C_{0}k^{3/2} = 0$$

with

$$h(r) = -\frac{\mu}{r} + \frac{1}{r} \int \frac{k(r)}{\beta + \eta r^2} dr$$

- Example: Black hole in an Einstein static universe $(\zeta \eta + \beta \Lambda = 0)$
- $h=1-\frac{\mu}{r}, \ \ f=\left(1-\frac{\mu}{r}\right)\left(1+\frac{\eta r^2}{\beta}\right),$
- ullet $\psi'=\pmrac{q}{h}\sqrt{rac{\mu}{r(1+rac{\eta}{B}r^2)}}$ and $\phi=qt+\psi(r)$.
- Solution is not asymptotically flat or de Sitter.

Can we get de Sitter asymptotics?

• Consider $S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2-\left(2\zeta\beta+\left(2\zeta\eta-\lambda\right)r^2\right)k+C_0k^{3/2}=0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h} \sqrt{1-h}$ and $\phi(t,r) = q t + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

• Consider $S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2-\left(2\zeta\beta+\left(2\zeta\eta-\lambda\right)r^2\right)k+\mathcal{C}_0k^{3/2}=0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3R}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h} \sqrt{1-h}$ and $\phi(t,r) = q t + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

• Consider $S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2-\left(2\zeta\beta+\left(2\zeta\eta-\lambda\right)r^2\right)k+C_0k^{3/2}=0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{b} \sqrt{1-h}$ and $\phi(t,r) = qt + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

• Consider $S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2-\left(2\zeta\beta+\left(2\zeta\eta-\lambda\right)r^2\right)k+C_0k^{3/2}=0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h} \sqrt{1-h}$ and $\phi(t,r) = qt + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

• Consider $S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2-\left(2\zeta\beta+\left(2\zeta\eta-\lambda\right)r^2\right)k+C_0k^{3/2}=0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h} \sqrt{1-h}$ and $\phi(t,r) = qt + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

• Consider $S = \int d^4x \sqrt{-g} \left[\zeta R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

- k(r) has to verify $q^2\beta(\beta+\eta r^2)^2-\left(2\zeta\beta+\left(2\zeta\eta-\lambda\right)r^2\right)k+C_0k^{3/2}=0$
- Infinite number of solutions with differing asymptotics, but are there de Sitter asymptotics?
- Particular solution reads $k(r) = \frac{(\beta + \eta r^2)^2}{\beta}$
- with $q^2 = (\zeta \eta + \beta \Lambda)/(\beta \eta)$ and $C_0 = (\zeta \eta \beta \Lambda)\sqrt{\beta}/\eta$
- $f = h = 1 \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ de Sitter Schwarzschild! with
- $\psi' = \pm \frac{q}{h} \sqrt{1-h}$ and $\phi(t,r) = q t + \psi(r)$
- Solution is regular at the horizon for de Sitter asymptotics

• We have $f = h = 1 - \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ with $\Lambda_{\rm eff} = -\eta/\beta$ $S = \int d^4x \sqrt{-g} \left[R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

- The effective cosmological constant is not the vacuum cosmological constant. In fact,
- $q^2 \eta = \Lambda \Lambda_{eff} > 0$
- Hence for any arbitrary $\Lambda > \Lambda_{eff}$ fixes q, integration constant.
- where Λ_{eff} is a geometric acceleration
- Solution self tunes vacuum cosmological constant but has "action induced" effective cosmological constant

• We have $f = h = 1 - \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ with $\Lambda_{\rm eff} = -\eta/\beta$ $S = \int d^4x \sqrt{-g} \left[R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

- The effective cosmological constant is not the vacuum cosmological constant. In fact,
- $q^2 \eta = \Lambda \Lambda_{eff} > 0$
- Hence for any arbitrary $\Lambda > \Lambda_{eff}$ fixes q, integration constant.
- where Λ_{eff} is a geometric acceleration
- Solution self tunes vacuum cosmological constant but has "action induced" effective cosmological constant

• We have $f = h = 1 - \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ with $\Lambda_{\text{eff}} = -\eta/\beta$ $S = \int d^4x \sqrt{-g} \left[R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

- The effective cosmological constant is not the vacuum cosmological constant. In fact,
- $q^2 \eta = \Lambda \Lambda_{eff} > 0$
- Hence for any arbitrary $\Lambda > \Lambda_{eff}$ fixes q, integration constant.
- where Λ_{eff} is a geometric acceleration
- Solution self tunes vacuum cosmological constant but has "action induced" effective cosmological constant

• We have $f = h = 1 - \frac{\mu}{r} + \frac{\eta}{3\beta}r^2$ with $\Lambda_{\text{eff}} = -\eta/\beta$ $S = \int d^4x \sqrt{-g} \left[R - 2\Lambda - \eta \left(\partial \phi \right)^2 + \beta G^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

- The effective cosmological constant is not the vacuum cosmological constant. In fact,
- $q^2 \eta = \Lambda \Lambda_{eff} > 0$
- Hence for any arbitrary $\Lambda > \Lambda_{eff}$ fixes q, integration constant.
- where Λ_{eff} is a geometric acceleration
- Solution self tunes vacuum cosmological constant but has "action induced" effective cosmological constant

- Introduction: basic facts about scalar-tensor theories
- Scalar-tensor black holes and the no hair paradigm

 Conformal secondary hair?
- Building higher order scalar-tensor black holesExample solutions
- 4 Hairy black hole
- 5 Adding a U(1) gauge field-EM
- 6 Conclusions

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) d^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\left\{egin{array}{l} g_{lphaeta}\mapsto ilde{g}_{lphaeta}=\Omega^2g_{lphaeta}\ \phi\mapsto ilde{\phi}=\Omega^{-1}\phi \end{array}
ight.$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.

The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74]

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) d^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\begin{cases} g_{\alpha\beta} \mapsto \tilde{g}_{\alpha\beta} = \Omega^2 g_{\alpha\beta} \\ \phi \mapsto \tilde{\phi} = \Omega^{-1} \phi \end{cases}$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.
 The PRMP solution IN Package at al. 70 J. Package in 74 l.

Conformally coupled scalar field

• Consider a conformally coupled scalar field ϕ :

$$S[g_{\mu\nu},\phi,\psi] = \int_{\mathcal{M}} \sqrt{-g} \left(\frac{R}{16\pi G} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} R \phi^2 \right) d^4 x + S_m[g_{\mu\nu},\psi]$$

• Invariance of the EOM of ϕ under the conformal transformation

$$\begin{cases} g_{\alpha\beta} \mapsto \tilde{g}_{\alpha\beta} = \Omega^2 g_{\alpha\beta} \\ \phi \mapsto \tilde{\phi} = \Omega^{-1} \phi \end{cases}$$

 There exists a black hole geometry with non-trivial scalar field and secondary black hole hair.

The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74]

BBMB completion [CC, Kolyvaris, Papantonopoulos and Tsoukalas]

- We would like to combine the above properties in order to obtain a hairy black hole.
- Consider the following action, $S(g_{\mu\nu}, \phi, \psi) = S_0 + S_1$ where

Conclusions

$$S_0 = \int dx^4 \sqrt{-g} \; \left[\zeta R + \eta \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} \phi^2 R \right) \right]$$

and

$$S_1 = \int dx^4 \sqrt{-g} \; \left(eta G_{\mu
u}
abla^{\mu} \Psi
abla^{
u} \Psi - \gamma T_{\mu
u}^{BBMB}
abla^{\mu} \Psi
abla^{
u} \Psi
ight)$$

where

$$T_{\mu
u}^{BBMB} = rac{1}{2}
abla_{\mu} \phi
abla_{
u} \phi - rac{1}{4} g_{\mu
u}
abla_{lpha} \phi
abla^{lpha} \phi + rac{1}{12} \left(g_{\mu
u} \Box -
abla_{\mu}
abla_{
u} + G_{\mu
u}
ight) \phi^2$$

• Scalar field equation of S_1 contains metric equation of S_0

$$abla_{\mu}J^{\mu}=0 \; , \qquad J^{\mu}=\left(\beta \mathit{G}_{\mu\nu}-\gamma \mathit{T}_{\mu\nu}^{\mathit{BBMB}}
ight) \nabla^{\nu}\Psi$$

Hairy black hole Adding a U(1) gauge field-EM Conclusions

BBMB completion [CC, Kolyvaris, Papantonopoulos and Tsoukalas]

- We would like to combine the above properties in order to obtain a hairy black hole.
- Consider the following action, $S(g_{\mu\nu},\phi,\psi)=S_0+S_1$ where

$$S_0 = \int dx^4 \sqrt{-g} \left[\zeta R + \eta \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} \phi^2 R \right) \right]$$

and

•

$$S_1 = \int dx^4 \sqrt{-g} \; \left(eta \, G_{\mu
u}
abla^\mu \Psi
abla^
u \Psi - \gamma \, T_{\mu
u}^{BBMB}
abla^\mu \Psi
abla^
u \Psi
ight) \, ,$$

where

$$T_{\mu
u}^{BBMB} = rac{1}{2}
abla_{\mu} \phi
abla_{
u} \phi - rac{1}{4} g_{\mu
u}
abla_{lpha} \phi
abla^{lpha} \phi + rac{1}{12} \left(g_{\mu
u} \Box -
abla_{\mu}
abla_{
u} + G_{\mu
u}
ight) \phi^2$$

• Scalar field equation of S_1 contains metric equation of S_0

$$abla_{\mu}J^{\mu}=0 \; , \qquad J^{\mu}=\left(\beta \mathit{G}_{\mu\nu}-\gamma \mathit{T}_{\mu\nu}^{\mathit{BBMB}}\right)
abla^{\nu}\Psi$$

Hairy black hole
Adding a U(1) gauge field-EM
Conclusions

BBMB completion [CC, Kolyvaris, Papantonopoulos and Tsoukalas]

- We would like to combine the above properties in order to obtain a hairy black hole.
- Consider the following action, $S(g_{\mu\nu},\phi,\psi)=S_0+S_1$ where

$$S_0 = \int dx^4 \sqrt{-g} \left[\zeta R + \eta \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} \phi^2 R \right) \right]$$

and

•

$$\label{eq:S1} S_1 = \int dx^4 \sqrt{-g} \; \left(\beta \, G_{\mu\nu} \nabla^\mu \Psi \nabla^\nu \Psi - \gamma \, T^{BBMB}_{\mu\nu} \nabla^\mu \Psi \nabla^\nu \Psi \right) \, ,$$

where

$$T_{\mu
u}^{BBMB} = rac{1}{2}
abla_{\mu} \phi
abla_{
u} \phi - rac{1}{4} g_{\mu
u}
abla_{lpha} \phi
abla^{lpha} \phi + rac{1}{12} \left(g_{\mu
u} \Box -
abla_{\mu}
abla_{
u} + G_{\mu
u}
ight) \phi^2 \; .$$

• Scalar field equation of S_1 contains metric equation of S_0 .

$$abla_{\mu}J^{\mu}=0 \; , \qquad J^{\mu}=\left(\beta \textit{G}_{\mu\nu}-\gamma \textit{T}_{\mu\nu}^{\textit{BBMB}}\right)
abla^{\nu}\Psi \; .$$

Hairy black hole
Adding a U(1) gauge field-EM
Conclusions

BBMB completion [CC, Kolyvaris, Papantonopoulos and Tsoukalas]

- We would like to combine the above properties in order to obtain a hairy black hole.
- Consider the following action, $S(g_{\mu\nu},\phi,\psi)=S_0+S_1$ where

$$S_0 = \int dx^4 \sqrt{-g} \left[\zeta R + \eta \left(-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} \phi^2 R \right) \right]$$

and

•

$$\label{eq:S1} S_1 = \int dx^4 \sqrt{-g} \; \left(\beta \, G_{\mu\nu} \nabla^\mu \Psi \nabla^\nu \Psi - \gamma \, T^{BBMB}_{\mu\nu} \nabla^\mu \Psi \nabla^\nu \Psi \right) \, ,$$

where

$$T_{\mu
u}^{BBMB} = rac{1}{2}
abla_{\mu} \phi
abla_{
u} \phi - rac{1}{4} g_{\mu
u}
abla_{lpha} \phi
abla^{lpha} \phi + rac{1}{12} \left(g_{\mu
u} \Box -
abla_{\mu}
abla_{
u} + G_{\mu
u}
ight) \phi^2 \; .$$

• Scalar field equation of S_1 contains metric equation of S_0 .

$$abla_{\mu}J^{\mu}=0\;,\qquad J^{\mu}=\left(eta \emph{G}_{\mu
u}-\gamma \emph{T}_{\mu
u}^{\emph{BBMB}}
ight)
abla^{
u}\Psi\;.$$

- \bullet Solve as before assuming linear time dependence for Ψ
- ullet Scalar ϕ has an additional branch regular at the "horizon"

A second solution reads,

$$h(r) = 1 - \frac{m}{r}, \qquad f(r) = \left(1 - \frac{m}{r}\right) \left(1 - \frac{\gamma c_0^2}{12\beta r^2}\right)$$

$$\phi(r) = \frac{c_0}{r},$$

$$\psi = qv - q \int \frac{dr}{\sqrt{\left(1 - \frac{\gamma c_0^2}{12\beta r^2}\right)\left(1 \mp \sqrt{\frac{m}{r}}\right)}}.$$

- \bullet Solve as before assuming linear time dependence for Ψ
- ullet Scalar ϕ has an additional branch regular at the "horizon"

Hairy black hole
Adding a U(1) gauge field-EM
Conclusions

Black hole with primary hair

- ullet Solve as before assuming linear time dependence for Ψ
- ullet Scalar ϕ has an additional branch regular at the "horizon" Solution reads,

$$\begin{split} f(r) &= h(r) = 1 - \frac{m}{r} + \frac{\gamma c_0^2}{12\beta r^2} \;, \\ \phi(r) &= \frac{c_0}{r} \;, \\ \psi'(r) &= \pm q \frac{\sqrt{mr - \frac{\gamma c_0^2}{12\beta}}}{r \; h(r)}, \\ \beta \eta + \gamma (q^2 \beta - \zeta) &= 0 \;. \end{split}$$

A second solution reads,

$$h(r) = 1 - \frac{m}{r}, \qquad f(r) = (1 - \frac{m}{r})\left(1 - \frac{\gamma c_0^2}{12\beta r^2}\right)$$

ullet Solve as before assuming linear time dependence for Ψ

Adding a U(1) gauge field-EM

ullet Scalar ϕ has an additional branch regular at the "horizon" Solution reads,

$$f(r) = h(r) = 1 - \frac{m}{r} + \frac{\gamma c_0^2}{12\beta r^2} ,$$

$$\phi(r) = \frac{c_0}{r} ,$$

$$\psi'(r) = \pm q \frac{\sqrt{mr - \frac{\gamma c_0^2}{12\beta}}}{r h(r)} ,$$

$$\beta \eta + \gamma (q^2 \beta - \zeta) = 0 .$$

- Scalar charge c₀ playing similar role to EM charge in RN
- A second solution reads.

$$h(r) = 1 - \frac{m}{r}, \qquad f(r) = (1 - \frac{m}{r})\left(1 - \frac{\gamma c_0^2}{12\beta r^2}\right)$$

Hairy black hole Adding a U(1) gauge field-EM Conclusions

Black hole with primary hair

- \bullet Solve as before assuming linear time dependence for Ψ
- Scalar ϕ has an additional branch regular at the "horizon" Solution reads,

$$\begin{split} f(r) &= h(r) = 1 - \frac{m}{r} + \frac{\gamma c_0^2}{12\beta r^2} \;, \\ \phi(r) &= \frac{c_0}{r} \;, \\ \psi'(r) &= \pm q \frac{\sqrt{mr - \frac{\gamma c_0^2}{12\beta}}}{r \; h(r)}, \\ \beta \eta + \gamma (q^2 \beta - \zeta) &= 0 \;. \end{split}$$

• Scalar charge c_0 playing similar role to EM charge in RN Galileon Ψ regular on the future horizon

$$\psi = qv - q \int \frac{dr}{1 \pm \sqrt{1 - h(r)}}$$

- ullet Solve as before assuming linear time dependence for Ψ
- ullet Scalar ϕ has an additional branch regular at the "horizon"

Conclusions

A second solution reads,

$$h(r) = 1 - \frac{m}{r}, \qquad f(r) = (1 - \frac{m}{r}) \left(1 - \frac{\gamma c_0^2}{12\beta r^2} \right)$$
 $\phi(r) = \frac{c_0}{r},$
 $\psi = qv - q \int \frac{dr}{\sqrt{\left(1 - \frac{\gamma c_0^2}{12\beta r^2} \right)} (1 \mp \sqrt{\frac{m}{r}})}.$

- Introduction: basic facts about scalar-tensor theories
- Scalar-tensor black holes and the no hair paradigm

 Conformal secondary hair?
- Building higher order scalar-tensor black holesExample solutions
- 4 Hairy black hole
- **5** Adding a U(1) gauge field-EM
- 6 Conclusions

Adding electromagnetic charge: U(1) gauge field

Following the same idea we can add an EM field

$$I[g_{\mu\nu}, \phi, A_{\mu}] = \int \sqrt{-g} d^4x \left[R - 2 \Lambda - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \beta G_{\mu\nu} \nabla^{\mu} \phi \nabla^{\nu} \phi - \eta (\partial \phi)^2 - \gamma T_{\mu\nu} \nabla^{\mu} \phi \nabla^{\nu} \phi \right],$$

where we have defined

$$\label{eq:temperature} \mathcal{T}^{\text{EM}}_{\mu\nu} := \frac{1}{2} \left[\mathcal{F}_{\mu\sigma} \mathcal{F}_{\nu}^{\sigma} - \frac{1}{4} \, g_{\mu\nu} \, \mathcal{F}_{\alpha\beta} \mathcal{F}^{\alpha\beta} \right].$$

The gauge field couples to Gallileon. We have a conserved current as before

$$\nabla_{\mu}J^{\mu} = \nabla_{\mu}\left[\left(\beta G^{\mu\nu} - \eta g^{\mu\nu} - \gamma T_{FM}^{\mu\nu}\right)\nabla_{\nu}\phi\right] = 0,$$

Adding "electromagnetic charge"

We consider spherical symmetric with a dyonic gauge field,

$$\label{eq:ds2} ds^2 = -h(r)\,dt^2 + \frac{dr^2}{f(r)} + r^2\Big(d\theta^2 + \sin^2(\theta)d\varphi^2\Big), \qquad \phi(t,r) = \psi(r) + q\,t, \qquad A_\mu dx^\mu = A(r)dt - P\cos(\theta)d\varphi^2$$

We define an auxiliary function S,

$$S(r) = \frac{\beta(rh(r))' + \frac{\gamma}{4}r^{2}F^{2}}{\eta r^{2} + \beta - \frac{\gamma P^{2}}{4r^{2}}}$$

where F is the electric field strength and the EOM reduce to,

$$\beta \left[q^2 \beta - \frac{r^2}{4\beta} (\gamma - \beta) F^2 \right] - S(r) \left[(\eta - \beta \Lambda) r^2 + 2 \beta - \frac{1}{4r^2} P^2 (\beta + \gamma) \right] + C_0 S(r)^{3/2} \left[\eta r^2 + \beta - \frac{\gamma P^2}{4r^2} \right] = 0,$$

$$\sqrt{\frac{f}{h}} r^2 F \left[1 + \frac{\gamma}{2} \left(f (\psi')^2 - \frac{q^2}{h} \right) \right] = Q$$

Example: Self tuning RN solution

$$h(r) = 1 - \frac{\mu}{r} + \frac{\eta r^2}{3\beta} + \frac{\gamma (Q^2 + P^2)}{4\beta r^2},$$

 $(\psi'(r))^2 = \frac{1 - f(r)}{f(r)^2} q^2,$
 $F_{tr} = F(r) = \frac{Q}{r^2}, \quad F_{\theta\varphi} = C(\theta) = P \sin(\theta).$

The coupling constants, the constants of integration and q are related as

$$P^2\beta\,\left(\Lambda\,\gamma+\eta\right)=Q^2\eta\,\left(\gamma-\beta\right),\qquad q^2=\frac{\eta+\Lambda\,\beta}{\beta\,\eta},\qquad C_0=\frac{1}{\eta}\left(\eta-\beta\,\Lambda\right).$$

- Introduction: basic facts about scalar-tensor theories
- Scalar-tensor black holes and the no hair paradigm

 Conformal secondary hair?
- Building higher order scalar-tensor black holesExample solutions
- 4 Hairy black hole
- 5 Adding a U(1) gauge field-EM
- 6 Conclusions

- Hairy black holes: non minimally coupled scalars and static spacetimes
 [Babichev and CC]
 minimally coupled complex scalar and stationary spacetimes [Herdeiro and Radu]: in both cases scalars have not the same symmetry as spacetime
- For a theory with Shift symmetry and higher order terms
- Scalar field with linear time dependence: EoM compatible. System is integrable
- Time dependence essential for regularity on the event horizon
- Higher order terms essential for novel branches of black holes
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including gauge fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability
- Can we go beyond spherical symmetry?

- Hairy black holes: non minimally coupled scalars and static spacetimes
 [Babichev and CC]
 minimally coupled complex scalar and stationary spacetimes [Herdeiro and Radu]: in both cases scalars have not the same symmetry as spacetime
- For a theory with Shift symmetry and higher order terms
- Scalar field with linear time dependence: EoM compatible. System is integrable
- Time dependence essential for regularity on the event horizon
- Higher order terms essential for novel branches of black holes
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including gauge fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability
- Can we go beyond spherical symmetry?

- Hairy black holes: non minimally coupled scalars and static spacetimes
 [Babichev and CC]
 minimally coupled complex scalar and stationary spacetimes [Herdeiro and Radu]: in both cases scalars have not the same symmetry as spacetime
- For a theory with Shift symmetry and higher order terms
- Scalar field with linear time dependence: EoM compatible. System is integrable
- Time dependence essential for regularity on the event horizon
- Higher order terms essential for novel branches of black holes
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including gauge fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability
- Can we go beyond spherical symmetry?

- Hairy black holes: non minimally coupled scalars and static spacetimes
 [Babichev and CC]
 minimally coupled complex scalar and stationary spacetimes [Herdeiro and Radu]: in both cases scalars have not the same symmetry as spacetime
- For a theory with Shift symmetry and higher order terms
- Scalar field with linear time dependence: EoM compatible. System is integrable
- Time dependence essential for regularity on the event horizon
- Higher order terms essential for novel branches of black holes
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including gauge fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability
- Can we go beyond spherical symmetry?

- Hairy black holes: non minimally coupled scalars and static spacetimes
 [Babichev and CC]
 minimally coupled complex scalar and stationary spacetimes [Herdeiro and Radu]: in both cases scalars have not the same symmetry as spacetime
- For a theory with Shift symmetry and higher order terms
- Scalar field with linear time dependence: EoM compatible. System is integrable
- Time dependence essential for regularity on the event horizon
- Higher order terms essential for novel branches of black holes
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including gauge fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability
- Can we go beyond spherical symmetry?

- Hairy black holes: non minimally coupled scalars and static spacetimes
 [Babichev and CC]
 minimally coupled complex scalar and stationary spacetimes [Herdeiro and Radu]: in both cases scalars have not the same symmetry as spacetime
- For a theory with Shift symmetry and higher order terms
- Scalar field with linear time dependence: EoM compatible. System is integrable
- Time dependence essential for regularity on the event horizon
- Higher order terms essential for novel branches of black holes
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including gauge fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability
- Can we go beyond spherical symmetry?

- Hairy black holes: non minimally coupled scalars and static spacetimes
 [Babichev and CC]
 minimally coupled complex scalar and stationary spacetimes [Herdeiro and
 Radu]: in both cases scalars have not the same symmetry as spacetime
- For a theory with Shift symmetry and higher order terms
- Scalar field with linear time dependence: EoM compatible. System is integrable
- Time dependence essential for regularity on the event horizon
- Higher order terms essential for novel branches of black holes
- Method can be applied in differing Gallileon context [Kobayashi and Tanahashi], in higher dimensions, including gauge fields.
- Is there a way to find observable for q? Is there a distinction possible?
- Thermodynamics and stability.
- Can we go beyond spherical symmetry?

