Refining Generalized Entropy

Joan Camps
DAMTP, Cambridge

based on I4I2.4093, with William R. Kelly (UCSB)

Ryu-Takayanagi

$$
I=\frac{1}{16 \pi G} \int \sqrt{-g} d^{D} x R
$$

Extremal surface

$$
S=\frac{(\operatorname{Area}(\Sigma))_{D-2}}{4 G}
$$

Comments

- Generalises Bekenstein-Hawking entropy
- Cumbersomely understood properties of entanglement become transparent, $\delta S=0$
- A tool to potentially reconstruct space holographically
- We have a first-principles derivation of it: Lewkowycz-Maldacena

Outline of derivation

- Euclidean dual of thermal-like part function

- And the replica trick
$g^{(3)}$

- Analytically continuing metrics $R_{\mu \nu}\left[g^{(n)}\right]=$ finite
- Expanding around $n \sim 1$

More general proposal
 Hung, Myers, Smolkin;
 de Boer, Kulaxizi, Parnachev
 $$
I=\frac{1}{16 \pi G} \int \sqrt{-g} d^{D} x\left(R+\alpha^{\prime} \text { Riem }^{2}+\ldots\right)
$$

Extremises entropy?

$$
S \sim \int_{\Sigma} \sqrt{\gamma} d^{D-2} \sigma\left(\frac{\partial \mathcal{L}}{\partial \operatorname{Riem}}+\frac{\partial^{2} \mathcal{L}}{\partial \operatorname{Riem}^{2}} K^{2}\right)_{\text {Dong: JC }{ }^{\prime} \text { । }}
$$

What this talk is about

- Reviewing the replica trick in entanglement entropy calculations (and holographic dual)
- Discussing the structure of $g^{(n)}$ (analytic continuation of metrics) around $n \sim 1$

Conclusions

- Σ is determined by $\delta S=0$ in GR and away (explicitly in one case)
- Ryu-Takayanagi follows independently from the assumption of replica symmetry
- Disclaimer:We do not conclude that replica symmetry is broken (but it may be)

Why?

- Higher derivatives: (a) Appear in the low energy limit of string theory; (b) Give a more general understanding
- Replica symmetry breaking: (a) Strengthens the derivation; (b) Hints to new possibilities
- In CMT, RSB explains glassy physics. Glasses are frustrated, with landscapes of vacua...

Lewkowycz-Maldacena

Ingredients of Generalized Entropy

- Replica trick

$$
\operatorname{tr}(\rho \log \rho)=\lim _{n \rightarrow 1} \frac{\log \left(\operatorname{tr} \rho^{n}\right)}{n-1} \quad \begin{aligned}
& \text { Expansion } \\
& \text { around } n \sim 1
\end{aligned}
$$

- Saddle point approximation to holography

$$
Z_{\mathrm{CFT}_{D-1}} \approx e^{-I_{E}\left[g_{\mu \nu}\right]}
$$

Setup

Casini, Huerta, Myers

States considered

- Generated by Euclidean path integrals

$$
\rho=\mathcal{P} e^{-\int H(\tau) d \tau} \quad \rho_{T}=\sum_{i}|i\rangle e^{-E_{i} \beta}\langle i|
$$

$$
\psi_{i}(x)
$$

Euclidean time

States considered

- Generated by Euclidean path integrals

$$
\rho=\mathcal{P} e^{-\int H(\tau) d \tau}
$$

$$
\rho_{T}=\sum_{i}|i\rangle e^{-E_{i} \beta}\langle i|
$$

States considered

- Generated by Euclidean path integrals

$$
\rho=\mathcal{P} e^{-\int H(\tau) d \tau} \quad \rho_{T}=\sum_{i}|i\rangle e^{-E_{i} \beta}\langle i|
$$

$$
\operatorname{tr} \rho^{2}=\sum_{i} \sum_{j}\left\langle\psi_{i}\right| \rho\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \rho\left|\psi_{i}\right\rangle
$$

States considered

- Generated by Euclidean path integrals

$$
\rho=\mathcal{P} e^{-\int H(\tau) d \tau}
$$

$$
\rho_{T}=\sum_{i}|i\rangle e^{-E_{i} \beta}\langle i|
$$

Gravity dual

Recap

- Replica trick $S=\lim _{n \rightarrow 1} S_{n}=-\left.\partial_{n} \log \frac{\operatorname{tr}\left(\rho^{n}\right)}{(\operatorname{tr} \rho)^{n}}\right|_{n=1}$
- Holography

$$
R_{\mu \nu}\left[g^{(n)}\right]=\text { finite }
$$

- The calculation 'localises at the tip'

Zooming into the tip

\mathbb{Z}_{n} symmetry

$$
\begin{array}{r}
\tau \rightarrow \tau+2 \pi s \\
z=r e^{i \tau / n} \rightarrow z e^{i 2 \pi s / n}
\end{array}
$$

\mathbb{Z}_{n} symmetry

$$
\begin{aligned}
& \begin{array}{r}
g^{(n)}=d z d \bar{z}+\gamma_{i j} d \sigma^{i} d \sigma^{j}+O \\
n \\
n
\end{array} \\
& O(z) \\
& O\left(z^{2}\right)
\end{aligned}
$$

Interlude:

Geometry of surfaces

$$
g=d z d \bar{z}+\gamma_{i j} d \sigma^{i} d \sigma^{j}+O(z)+O\left(z^{2}\right)
$$

$1 / \ell^{2}$
$R_{\mu \nu \rho \sigma}$
Extrinsic curvature $\quad K_{i j z} z d \sigma^{i} d \sigma^{j}$
Torsion of curve $A_{i z \bar{z}}(\bar{z} d z-z d \bar{z}) d \sigma^{i}$
Gauge Christoffels $\quad \Gamma_{z z}^{z} z d \bar{z} d z$

Properties of \mathbb{Z}_{n} metrics

$$
g^{(n)}=d z d \bar{z}+\left(\gamma_{i j}+2 K_{i j z} z^{n}\right) d \sigma^{i} d \sigma^{j}+\ldots
$$

- Explicitly regular at finite n
- At finite $n>1, z=0$ has no extrinsic curvature. At $n=1, \quad K_{i j z}$
- Think about it in a double expansion

$$
z \sim 0 \quad n \sim 1
$$

Properties of \mathbb{Z}_{n} metrics

$$
g^{(n)}=d z d \bar{z}+\left(\gamma_{i j}+2 K_{i j z} z^{n}\right) d \sigma^{i} d \sigma^{j}+\ldots
$$

$$
\begin{gathered}
\operatorname{Riem} \sim \partial_{z}^{2} g^{(n)} \\
R_{z z}=-(n-1) \frac{\gamma^{i j} K_{i j z}}{z} z^{n-1}+\ldots
\end{gathered}
$$

Singular stress tensor for $n \sim 1$ unless $\gamma^{i j} K_{i j z}=0$

Properties of \mathbb{Z}_{n} metrics

$$
g^{(n)}=d z d \bar{z}+\left(\gamma_{i j}+2 K_{i j z} z^{n}\right) d \sigma^{i} d \sigma^{j}+\ldots
$$

Singular stress tensor for $n \sim 1$ unless $\gamma^{i j} K_{i j z}=0$

Caveats

- These metrics are not single-valued for non-integer n (just as z^{n} is not).
- While non-single valuedness comes as a branch cut, in the Riemann tensor we see issues at just one point $(z=0)$.
- This is related to the meaning of \mathbb{Z}_{n}
- But we can calculate...

Refinements

RSB: discussion

- By definition, the boundary is replica symmetric

- The bulk could be not, \mathbb{Z}_{n}, (SSB)
- The tip of the cigar can perhaps be defined as the fixed point of a residual symmetry
- However, recall we want to work to $O(n-1)$

RSB terms

$$
\begin{gathered}
z^{n} \\
z \rightarrow z e^{i 2 \pi \frac{s}{n}}
\end{gathered}
$$

$$
\begin{gathered}
z^{1+m(n-1)} \\
z \rightarrow z e^{i 2 \pi \frac{s}{1+m(n-1)}}
\end{gathered}
$$

Fixed point of residual symmetry

RSB terms

$$
K_{i j z} z^{n} \rightarrow \sum_{m>0} K_{i j z}^{(m)} z z^{m(n-1)}
$$

- we forbid contributions $\propto z d \sigma^{i} d \sigma^{j}$, that do not preserve any 'subsymmetry'
- Explicitly regular at finite n
- At finite $n>1, z=0$ has no extrinsic curvature. At $n=1, \quad K_{i j z}=\sum_{m>0} K_{i j z}^{(m)}$

Geometrically located, even when RSB

RSB terms

$$
\begin{gathered}
K_{i j z} z^{n} \rightarrow \sum_{m>0} K_{i j z}^{(m)} z z^{m(n-1)} \\
R_{z z} \sim \frac{n-1}{z} \sum_{m>0} m \gamma^{i j} K_{i j z}^{(m)} z^{m(n-1)} \\
\gamma^{i j} K_{i j z}^{(m)}=0
\end{gathered}
$$

RSB terms

$$
\begin{gathered}
K_{i j z} z^{n} \rightarrow \sum_{m>0} K_{i j z}^{(m)} z z^{m(n-1)} \\
R_{z z} \sim \frac{n}{}{ }^{n} \gamma^{(m)} K_{i j z}^{(m)} z^{m(n-1)} \\
\gamma_{m>0}^{i j} K_{i j z}^{(m)}=0
\end{gathered}
$$

Further refinements

- Essential for higher derivative gravity
- Crucial to allow for terms that are pure gauge at $n \sim 1$, e.g.

$$
g^{(n)}=d z d \bar{z}+\sum_{m} \Gamma_{\bar{z} \bar{z} \bar{z}}^{(m)} z(z \bar{z})^{m(n-1)} d z d \bar{z}+\ldots
$$

- All components $R_{\mu \nu}-\alpha^{\prime} H_{\mu \nu}=$ finite $\quad \delta S=0$
- RSB allowed as before

Summary

- Analytically continue $g^{(n)}$ in n, expand around $n \sim 1$

- Allow all terms in $g^{(n)}$ consistent with hypotheses (RSB, pure gauge at $n=1$)
- RT and generalisations follow: $\delta S=0$

