Refining
Generalized Entropy

Joan Camps
DAMTP, Cambridge

based on 1412.4093, with William R. Kelly (UCSB)



Ryu- Takayanagi

D
16G/\/ gd”r R

> Extremal surface




Comments

Generalises Bekenstein-Hawking entropy

Cumbersomely understood properties of
entanglement become transparent, 65 =0

A tool to potentially reconstruct space
holographically

We have a first-principles derivation of it:
Lewkowycz-Maldacena



Qutline of derivation

Euclidean dual of thermal-like part function

And the replica trick

Analytically continuing metrics R,,,[¢\")] = finite

Expanding around n ~ 1



More general proposal
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What this talk is about

® Reviewing the replica trick in entanglement
entropy calculations (and holographic dual)

® Discussing the structure of ¢ (analytic
continuation of metrics) around n ~ 1



Conclusions

® Y isdetermined by 65 =0 in GR and
away (explicitly in one case)

® Ryu-Takayanagi follows independently from
the assumption of replica symmetry

® Disclaimer:VWe do not conclude that
replica symmetry is broken (but it may be)



Why!

® Higher derivatives: (a) Appear in the low
energy limit of string theory; (b) Give a
more general understanding

® Replica symmetry breaking: (a) Strengthens
the derivation; (b) Hints to new possibilities

® |n CMT, RSB explains glassy physics. Glasses
are frustrated, with landscapes of vacua...

AN



Lewkowycz-Maldacena



Ingredients of
Generalized Entropy

® Replica trick

tr(plogp) = lim —>—

log(trp")

m

Expansion
around n ~ 1

® Saddle point approximation to holography

ZCFTD_l ~

~ e_IE [g,ul/]



Setup
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States considered

® Generated by Euclidean path integrals
p="Pe S HIT pr = > _liye PP (]
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States considered

® Generated by Euclidean path integrals

p="Pe S HIT pr = > _liye PP (]

vi(z) T 7 > (Wilpls) = trp



States considered

® Generated by Euclidean path integrals
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States considered

® Generated by Euclidean path integrals
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Gravity dual
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Recap

® Replica trick S = lim S,, = — 0, log tr (p 72
n—1 (trp)

® Holography

Ry, [gm)}

® The calculation ‘localises at the tip’

Loy



Zooming into the tip

g\ = dzdz + ~;;dotdo? + . ..



Liy, SYymmetry
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Liy, SYymmetry

g™ = dzdz + ;;dotdo? + O(2") + O(22) 2"
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Interlude:
Geometry of surfaces
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Torsion of curve A,;,:(zdz — zdz)do"

' Gauge Christoffels [C.zdzdz




Properties of Z,, metrics

9" = dzdz + (vyij + 2Kij.2") do'do? + . ..

® Explicitly regular at finite n \/

® At finite n > 1, 2 =0 has no extrinsic
curvature. At n=1, K;;. \/

® Think about it in a double expansion

z ~ () n~ 1



Properties of Z,, metrics

9" = dzdz + (vyij + 2Kij.2") do'do? + . ..

Riem ~ 92¢(™)

)WK@;,-Z n—1

R,,=—(n-1
2

Singular stress tensor for n ~ 1 unless [fyinijz — ()J




Properties of Z,, metrics

9" = dzdz + (vyij + 2Kij.2") do'do? + . ..

Singular stress tensor for n ~ 1 unless [winijz — ()]




Caveats

These metrics are not single-valued for
non-integer n (justas z" is not).

While non-single valuedness comes as a
branch cut, in the Riemann tensor we see
issues at just one point (z = 0).

This is related to the meaning of Z,

But we can calculate...



Refinements



RSB: discussion

By definition, the boundary is replica
symmetric G

The bulk could be not, %, , (SSB)

The tip of the cigar can perhaps be defined
as the fixed point of a residual symmetry

However, recall we want to work to O(n — 1)



RSB terms

Zl—l—m(n—l)
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Fixed point of (Zl—l—m(n—lg
residual symmetry




RSB terms

Kij.2" — Y Kz zmn=h

1] 2
m>0
® we forbid contributions « zdo'de’, that do
not preserve any ‘subsymmetry’ \/

® Explicitly regular at finite n \/

® At finite n > 1, z =0 has no extrinsic
curvature. At n=1, K;j.= ) Kff?

m>0

Geometrically located, even when RSB



RSB terms

Kij.2" — Y Kz zmn=b
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RSB terms
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Further refinements

® Essential for higher derivative gravity

® Crucial to allow for terms that are pure
gaugeat n~1 ,e.g.

g™ =dzdz + Z Fggzz (z2)™ " Vdzdz + ... \/

® All components R, —«a'H,, = finite [(53 = O]

® RSB allowed as before



Summary

® Analytically continue ¢™ in n,expand
around n ~ 1

e,

n=3

e Allow all terms in ¢™ consistent with
hypotheses (RSB, pure gauge at n = 1)

® RT and generalisations follow: [55 — ()]
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