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Comments

• Generalises Bekenstein-Hawking entropy

• Cumbersomely understood properties of 
entanglement become transparent,

• A tool to potentially reconstruct space 
holographically

• We have a first-principles derivation of it: 
Lewkowycz-Maldacena

�S = 0



Outline of derivation

• Euclidean dual of thermal-like part function

• And the replica trick

• Analytically continuing metrics

• Expanding around

g(1)

g(3)

Rµ⌫ [g
(n)] = finite

n ⇠ 1



More general proposal
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What this talk is about

• Reviewing the replica trick in entanglement 
entropy calculations (and holographic dual)

• Discussing the structure of         (analytic 
continuation of metrics) around

g(n)

n ⇠ 1



Conclusions

•      is determined by              in GR and 
away (explicitly in one case)

• Ryu-Takayanagi follows independently from 
the assumption of replica symmetry

• Disclaimer: We do not conclude that 
replica symmetry is broken (but it may be)

⌃ �S = 0



Why?

• Higher derivatives: (a) Appear in the low 
energy limit of string theory; (b) Give a 
more general understanding

• Replica symmetry breaking: (a) Strengthens 
the derivation; (b) Hints to new possibilities

• In CMT, RSB explains glassy physics. Glasses 
are frustrated, with landscapes of vacua...
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Ingredients of 
Generalized Entropy
• Replica trick

• Saddle point approximation to holography

gµ⌫ AdSD

CFTD�1

ZCFTD�1 ⇡ e�IE [gµ⌫ ]

tr(⇢ log ⇢) = lim

n!1

log(tr⇢n)

n� 1

Expansion    
around n ⇠ 1
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States considered

• Generated by Euclidean path integrals

Field theory directions

Euclidean time

Quantum amplitude⌧
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States considered

• Generated by Euclidean path integrals
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Gravity dual

tr (⇢n)

(tr⇢)n
⇡ e�I[g(n)]

e�nI[g(1)]

g(1)

g(2)
g(3)



Recap

• Replica trick

• Holography

• The calculation ‘localises at the tip’
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Zooming into the tip
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Interlude:
Geometry of surfaces
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• Explicitly regular at finite 

• At finite         ,           has no extrinsic 
curvature.  At          ,

• Think about it in a double expansion

Properties of      metricsZn
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Properties of      metrics

Singular stress tensor for          unlessn ⇠ 1 �ijKijz = 0
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Properties of      metrics

Singular stress tensor for          unlessn ⇠ 1 �ijKijz = 0
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Caveats

• These metrics are not single-valued for 
non-integer      (just as      is not).

• While non-single valuedness comes as a 
branch cut, in the Riemann tensor we see 
issues at just one point (        ).

• This is related to the meaning of 

• But we can calculate...

n zn
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Refinements



RSB: discussion

• By definition, the boundary is replica 
symmetric

• The bulk could be not,       , (SSB)

• The tip of the cigar can perhaps be defined 
as the fixed point of a residual symmetry

• However, recall we want to work to

Zn

O(n� 1)



RSB terms
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RSB terms

/ z d�id�j• we forbid contributions                , that do 
not preserve any ‘subsymmetry’

• Explicitly regular at finite 

• At finite         ,           has no extrinsic 
curvature.  At          ,
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Geometrically located, even when RSB



RSB terms
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RSB terms
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Further refinements
• Essential for higher derivative gravity

• Crucial to allow for terms that are pure 
gauge at             , e.g.

• All components

• RSB allowed as before

n ⇠ 1

�S = 0

X
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Summary
• Analytically continue         in    , expand 

around

• Allow all terms in        consistent with 
hypotheses (RSB, pure gauge at         )

• RT and generalisations follow: �S = 0

n ⇠ 1

ng(n)

n = 1

g(n)

n = 3


