Refining Generalized Entropy

Joan Camps DAMTP, Cambridge

based on 1412.4093, with William R. Kelly (UCSB)

Ryu-Takayanagi

 $I = \frac{1}{16\pi G} \int \sqrt{-g} d^D x R$

Extremal surface

 $S = \frac{(\operatorname{Area}(\Sigma))_{D-2}}{4C}$

Comments

- Generalises Bekenstein-Hawking entropy
- Cumbersomely understood properties of entanglement become transparent, $\delta S = 0$
- A tool to potentially reconstruct space holographically
- We have a first-principles derivation of it: Lewkowycz-Maldacena

Outline of derivation

• Euclidean dual of thermal-like part function

- And the replica trick $g^{(3)}$
- Analytically continuing metrics $R_{\mu\nu}[g^{(n)}] = \text{finite}$
- Expanding around $n \sim 1$

More general proposal Hung, Myers, Smolkin;

de Boer, Kulaxizi, Parnachev

$$I = \frac{1}{16\pi G} \int \sqrt{-g} d^D x \left(R + \alpha' \text{Riem}^2 + \dots \right)$$

Extremises entropy?

 $S \sim \int_{\Sigma} \sqrt{\gamma} d^{D-2} \sigma \left(\frac{\partial \mathcal{L}}{\partial \text{Riem}} + \frac{\partial^2 \mathcal{L}}{\partial \text{Riem}^2} K^2 \right)$ Dong; JC 'I3 see also Miao, Guo '14

What this talk is about

- Reviewing the replica trick in entanglement entropy calculations (and holographic dual)
- Discussing the structure of $g^{(n)}$ (analytic continuation of metrics) around $n \sim 1$

Conclusions

- Σ is determined by $\delta S = 0$ in GR and away (explicitly in one case)
- Ryu-Takayanagi follows independently from the assumption of replica symmetry
- Disclaimer: We do not conclude that replica symmetry is broken (but it may be)

Why?

- Higher derivatives: (a) Appear in the low energy limit of string theory; (b) Give a more general understanding
- Replica symmetry breaking: (a) Strengthens the derivation; (b) Hints to new possibilities
- In CMT, RSB explains glassy physics. Glasses are frustrated, with landscapes of vacua...

Lewkowycz-Maldacena

Ingredients of Generalized Entropy

• Replica trick

$$\operatorname{tr}(\rho \log \rho) = \lim_{n \to 1} \frac{\log(\operatorname{tr} \rho^n)}{n-1}$$

Expansion around $n \sim 1$

Saddle point approximation to holography

 $Z_{\mathrm{CFT}_{D-1}} \approx e^{-I_E[g_{\mu\nu}]}$

• Generated by Euclidean path integrals

Euclidean time

• Generated by Euclidean path integrals

Generated by Euclidean path integrals

Generated by Euclidean path integrals

Recap

• **Replica trick**
$$S = \lim_{n \to 1} S_n = -\partial_n \log \frac{\operatorname{tr}(\rho^n)}{(\operatorname{tr}\rho)^n}\Big|_{n=1}$$

• The calculation 'localises at the tip'

$$\mathbb{Z}_n$$

Properties of \mathbb{Z}_n metrics

$$g^{(n)} = dz d\bar{z} + (\gamma_{ij} + 2K_{ijz}z^n) d\sigma^i d\sigma^j + \dots$$

- Explicitly regular at finite n \checkmark
- At finite n > 1, z = 0 has no extrinsic curvature. At n = 1, K_{ijz}
- Think about it in a double expansion

$$z \sim 0$$
 $n \sim 1$

Properties of \mathbb{Z}_n metrics

$$g^{(n)} = dz d\bar{z} + (\gamma_{ij} + 2K_{ijz}z^n) d\sigma^i d\sigma^j + \dots$$

Riem $\sim \partial_z^2 g^{(n)}$

$$R_{zz} = -(n-1)\frac{\gamma^{ij}K_{ijz}}{z}z^{n-1} + \dots$$

Singular stress tensor for $n \sim 1$ unless $\left[\gamma^{ij}R\right]$

$$\left(\gamma^{ij}K_{ijz}=0\right)$$

Properties of \mathbb{Z}_n metrics

 $g^{(n)} = dz d\bar{z} + (\gamma_{ij} + 2K_{ijz}z^n) d\sigma^i d\sigma^j + \dots$

Singular stress tensor for $n \sim 1$ unless $\left[\gamma^{ij} K_{ijz} = 0\right]$

Caveats

- These metrics are not single-valued for non-integer n (just as z^n is not).
- While non-single valuedness comes as a branch cut, in the Riemann tensor we see issues at just one point (z = 0).
- This is related to the meaning of \mathbb{Z}_n
- But we can calculate...

Refinements

RSB: discussion

- By definition, the boundary is replica symmetric
- The bulk could be not, X_n , (SSB)
- The tip of the cigar can perhaps be defined as the fixed point of a residual symmetry
- However, recall we want to work to O(n-1)

 $z^{1+m(n-1)}$ $z \to z e^{i2\pi \frac{s}{1+m(n-1)}}$

Fixed point of residual symmetry

$$K_{ijz} z^n \to \sum_{m>0} K_{ijz}^{(m)} z \, z^{m(n-1)}$$

- we forbid contributions $\propto z \, d\sigma^i d\sigma^j$, that do not preserve any 'subsymmetry'
- Explicitly regular at finite n
- At finite n > 1, z = 0 has no extrinsic curvature. At n = 1, $K_{ijz} = \sum_{m>0} K_{ijz}^{(m)}$

Geometrically located, even when RSB

$$K_{ijz}z^n \to \sum_{m>0} K_{ijz}^{(m)} z \, z^{m(n-1)}$$

$$R_{zz} \sim \frac{n-1}{z} \sum_{m>0} m \gamma^{ij} K_{ijz}^{(m)} z^{m(n-1)}$$

 $K_{ijz}z^n \to \sum K^{(m)}_{ijz}z \, z^{m(n-1)}$ m > 0

Further refinements

- Essential for higher derivative gravity
- Crucial to allow for terms that are pure gauge at $n \sim 1$, e.g.

$$g^{(n)} = dz \, d\bar{z} + \sum_{m} \Gamma^{(m)}_{\bar{z}\bar{z}z} z \, (z\bar{z})^{m(n-1)} dz \, d\bar{z} + \dots \checkmark$$

• All components $R_{\mu\nu} - \alpha' H_{\mu\nu} = \text{finite}$

$$\delta S = 0$$

• RSB allowed as before

Summary

• Analytically continue $g^{(n)}$ in n, expand around $n \sim 1$

- Allow all terms in $g^{(n)}$ consistent with hypotheses (RSB, pure gauge at n = 1)
- RT and generalisations follow: $\delta S = 0$